He estado buscando en el almacenaje de las raíces cuadradas, pero he encontrado que $\sqrt[3]{2+\sqrt{5}}$ es igual a $(1+\sqrt{5})/2$. Lo mismo es cierto para $\sqrt[3]{2-\sqrt{5}}$$(1-\sqrt{5})/2$. No puedo entender cómo esto es cierto. He demostrado esto por la configuración de ambos iguales a x y la formación de ecuaciones polinómicas. $y= x^2-x-1$ $y=x^6-4x^3-1$ . No sé cómo resolver un grado 6 polinomio con la mano como que. Mi objetivo es denest el original $\sqrt[3]{2+\sqrt{5}}$ sin el conocimiento de la simplificación del phi.
Respuesta
¿Demasiados anuncios?Sugerencia : Como regla general, cuando se trata con anidada radicales de la forma $\sqrt[n]{A+B\sqrt[m]C}$ , escribir $A+B\sqrt[m]C=(a+b\sqrt[m]C)^n$, y luego emplear Newton del teorema del binomio. En nuestro caso, hemos
$$\left(a+b\sqrt5\ \right)^3=a^3+3a^2(b\sqrt5)+3a(b\sqrt5)^2+(b\sqrt5)^3=\underbrace{(a^3+15ab^2)}_2+\underbrace{(3a^2b+5b^3)}_1\sqrt5$$ $$\iff a^3+15ab^2=2(3a^2b+5b^3)\iff a^3+15ab^2-6a^2b-10b^3=0\quad|:b^3\iff$$ $$\iff\left(\frac ab\right)^3-6\left(\frac ab\right)^2+15\left(\frac ab\right)-10=0\iff x^3-6x^2+15x-10=0\iff x=1$$ $$\iff\frac ab=1\iff a=b\iff a^3+15a^3=2\iff16a^3=2\iff a=\sqrt[3]\frac18=\frac12$$ or $3b^3+5b^3=1\iff b=\sqrt[3]\frac18=\frac12$ . Similarly for when the second term is $-1$.