9 votos

Demostrar $2^{2n} = \sum_{k=0}^{n}\binom{2n+1}{k}$

Estoy tratando de probar la siguiente ecuación anterior. Hasta ahora tengo: \begin{align} 2^{2n} &= (1+1)^{2n}\\ &= \sum_{k=0}^{2n}\binom{2n}{k}1^k1^{n-k} = \sum_{k=0}^{2n}\binom{2n}{k} & \text{(By the Binomial Theorem)} \end{align}

Sé que tengo que utilizar la siguiente identidad de alguna manera: $$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

¿Cómo puedo dividir mi adición a conseguir lo que estoy buscando? Gracias!

EDIT: AQUÍ ESTÁ MI SOLUCIÓN \begin{align*} 2^{2n} &= (1+1)^{2n}\\ &= \sum_{k=0}^{2n}\binom{2n}{k}1^k1^{2n-k} & \text{(By the Binomial Theorem)}\\ &= \sum_{k=0}^{n}\binom{2n}{k} + \sum_{k=n+1}^{2n}\binom{2n}{k}\\ &= \sum_{k=0}^{n}\binom{2n}{k} + \sum_{k=n+1}^{2n}\binom{2n}{2n-k} & \text{(Binomial Symmetry)}\\ &= \sum_{k=0}^{n}\binom{2n}{k} + \sum_{k=0}^{n-1}\binom{2n}{k}\\ &= \sum_{k=0}^{n}\binom{2n}{k} + \sum_{k=1}^{n}\binom{2n}{k-1}\\ &= \binom{2n}{0} + \sum_{k=1}^{n}\binom{2n}{k} + \sum_{k=1}^{n}\binom{2n}{k-1}\\ &= \binom{2n}{0} + \sum_{k=1}^{n}\binom{2n+1}{k} & \text{(By Identity listed above)}\\ &= \sum_{k=0}^{n}\binom{2n+1}{k} \end{align*}

5voto

Cfr Puntos 2525

$$\sum_{k=0}^{n}\binom{2n+1}{k}=\frac{1}{2}\sum_{k=0}^{2n+1}\binom{2n+1}{k}=\frac{2^{2n+1}}{2}=2^{2n}$$

Usando la relación $$\binom{2n+1}{k}=\binom{2n+1}{2n+1-k}$$ for $0 \le k \le$n.

4voto

Hagen von Eitzen Puntos 171160

$$ 2^{2n}=\frac12\cdot 2^{2n+1}=\frac12\sum_{k=0}^{2n+1}{2n+1\choose k}=\frac12\sum_{k=0}^n\left({2n+1\choose k}+{2n+1\choose 2n+1-k}\right)$$

1voto

peterh Puntos 1095

Yo sugeriría el uso de la inducción:

Para $n=1$:

$2^2 = \binom{3}{0}+\binom{3}{1}$, la verdad.

Para $m=n+1$:

$2^{2n+2}=4\cdot 2^{2n} = \sum_{k=0}^{n}\binom{2n+1}{k} + \binom{2n+2}{n+1} = 2^{2n} + \binom{2n+2}{n+1} = 2^{2n} + \frac{(2n+2)!}{(n+1)!^2}$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X