Yo aviso, tanto la wikipedia y mathworld el gran resultado de $\int\underbrace{x^{x^{\cdot^{\cdot^x}}}}_m~dx$ que:
$\int\underbrace{x^{x^{\cdot^{\cdot^x}}}}_m~dx=\sum\limits_{n=0}^m\dfrac{(-1)^n(n+1)^{n-1}}{n!}\Gamma(n+1,-\ln x)+\sum\limits_{n=m+1}^\infty(-1)^na_{mn}\Gamma(n+1,-\ln x)$ donde $a_{mn}=\begin{cases}1&\text{if}~n=0\\\dfrac{1}{n!}&\text{if}~m=1\\\dfrac{1}{n}\sum\limits_{j=1}^nja_{m,n-j}a_{m-1,j-1}&\text{otherwise} \end{cases}$
¿Cómo funciona este resultado deriva?