$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$\begin{align}
&\color{#66f}{\large\sum_{k = 0}^{D}\pars{-1}^{k}{n \choose k}}
=\sum_{k = 0}^{D}\pars{-1}^{k}\ \overbrace{\oint_{0\ <\ \verts{z}\ =\ a\ <\ 1}
{\pars{1 + z}^{n} \over z^{k + 1}}\,{\dd z \over 2\pi\ic}}
^{\ds{=\ {n \choose k}}}
\\[3mm]&=\oint_{0\ <\ \verts{z}\ =\ a\ <\ 1}{\pars{1 + z}^{n} \over z}
\sum_{k = 0}^{D}\pars{-\,{1 \over z}}^{k}\,{\dd z \over 2\pi\ic}
=\oint_{0\ <\ \verts{z}\ =\ a\ <\ 1}{\pars{1 + z}^{n} \over z}
{\pars{-1/z}^{D} + z \over 1 + z}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\pars{-1}^{D}\ \underbrace{\oint_{\verts{z}\ =\ a\ <\ 1}
{\pars{1 + z}^{n - 1} \over z^{D + 1}}\,{\dd z \over 2\pi\ic}}
_{\ds{=\ {n - 1 \choose D}}}\ +\
\underbrace{\oint_{0\ <\ \verts{z}\ =\ a\ <\ 1}\pars{1 + z}^{n - 1}
\,{\dd z \over 2\pi\ic}}_{\ds{=\ 0}}
\\[3mm]&=\color{#66f}{\large\pars{-1}^{D}{n - 1 \choose D}}
\end{align}