$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
Tras la ${\large\tt OP}$:
\begin{align}
\int_{0}^{\infty}x\root{1 - \expo{-x}}\expo{-x}\,\dd x&=
2\sum_{k = 1}^{\infty}{1 \over k\pars{3 + 2k}}
=\sum_{k = 0}^{\infty}{1 \over \pars{k + 5/2}\pars{k + 1}}
\\[3mm]&={\Psi\pars{5/2} - \Psi\pars{1} \over 5/2 - 1}
={2 \over 3}\bracks{\Psi\pars{5 \over 2} - \Psi\pars{1}}
\end{align}
donde $\ds{\Psi\pars{z}}$ es la Función Digamma ${\bf\mbox{6.3.1}}$.
También
$$
\int_{0}^{\infty}x\raíz{1 - \expo{-x}}\expo{-x}\,\dd x
={2 \más de 3}\bracks{\Psi\pars{3 \over 2} + {2 \más de 3} - \Psi\pars{1}}
={2 \más de 3}\bracks{\Psi\pars{1 \over 2} + {8 \más de 3} - \Psi\pars{1}}
$$
donde se utilizó ${\bf\mbox{6.3.2}}$ ${\bf\mbox{6.3.5}}$ .
Sin embargo
$$
\Psi\pars{\mitad}=-\gamma - 2\ln\pars{2}\,,
\qquad\Psi\pars{1} = -\gamma
$$
$\ds{\gamma}$ es el de Euler-Mascheroni Constante${\bf\mbox{6.1.3}}$.
$$\color{#00f}{\large%
\int_{0}^{\infty}x\raíz{1 - \expo{-x}}\expo{-x}\,\dd x
={16 \más de 9} - {4 \más de 3}\,\ln\pars{2}} \approx 0.8536
$$