Con un modelo logit multinomial que te impone la restricción de que todas las probabilidades pronosticadas agregar hasta 1. Cuando se utiliza binario independiente del modelo logit, ya no puede imponer esa restricción, que se estima en modelos separados después de todo. Así que esa sería la principal diferencia entre estos dos modelos.
Como se puede ver en el ejemplo a continuación (En Stata, como que es el programa que mejor conozco), los modelos tienden a ser similares, pero no iguales. Me gustaría ser especialmente cuidadosos con la extrapolación de probabilidades pronosticadas.
// some data preparation
. sysuse nlsw88, clear
(NLSW, 1988 extract)
.
. gen byte occat = cond(occupation < 3 , 1, ///
> cond(inlist(occupation, 5, 6, 8, 13), 2, 3)) ///
> if !missing(occupation)
(9 missing values generated)
. label variable occat "occupation in categories"
. label define occat 1 "high" ///
> 2 "middle" ///
> 3 "low"
. label value occat occat
.
. gen byte middle = (occat == 2) if occat !=1 & !missing(occat)
(590 missing values generated)
. gen byte high = (occat == 1) if occat !=2 & !missing(occat)
(781 missing values generated)
// a multinomial logit model
. mlogit occat i.race i.collgrad , base(3) nolog
Multinomial logistic regression Number of obs = 2237
LR chi2(6) = 218.82
Prob > chi2 = 0.0000
Log likelihood = -2315.9312 Pseudo R2 = 0.0451
-------------------------------------------------------------------------------
occat | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
high |
race |
black | -.4005801 .1421777 -2.82 0.005 -.6792433 -.121917
other | .4588831 .4962591 0.92 0.355 -.5137668 1.431533
|
collgrad |
college grad | 1.495019 .1341625 11.14 0.000 1.232065 1.757972
_cons | -.7010308 .0705042 -9.94 0.000 -.8392165 -.5628451
--------------+----------------------------------------------------------------
middle |
race |
black | .6728568 .1106792 6.08 0.000 .4559296 .889784
other | .2678372 .509735 0.53 0.599 -.7312251 1.266899
|
collgrad |
college grad | .976244 .1334458 7.32 0.000 .714695 1.237793
_cons | -.517313 .0662238 -7.81 0.000 -.6471092 -.3875168
--------------+----------------------------------------------------------------
low | (base outcome)
-------------------------------------------------------------------------------
// separate logits:
. logit high i.race i.collgrad , nolog
Logistic regression Number of obs = 1465
LR chi2(3) = 154.21
Prob > chi2 = 0.0000
Log likelihood = -906.79453 Pseudo R2 = 0.0784
-------------------------------------------------------------------------------
high | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | -.5309439 .1463507 -3.63 0.000 -.817786 -.2441017
other | .2670161 .5116686 0.52 0.602 -.735836 1.269868
|
collgrad |
college grad | 1.525834 .1347081 11.33 0.000 1.261811 1.789857
_cons | -.6808361 .0694323 -9.81 0.000 -.816921 -.5447512
-------------------------------------------------------------------------------
. logit middle i.race i.collgrad , nolog
Logistic regression Number of obs = 1656
LR chi2(3) = 90.13
Prob > chi2 = 0.0000
Log likelihood = -1098.9988 Pseudo R2 = 0.0394
-------------------------------------------------------------------------------
middle | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | .6942945 .1114418 6.23 0.000 .4758725 .9127164
other | .3492788 .5125802 0.68 0.496 -.6553598 1.353918
|
collgrad |
college grad | .9979952 .1341664 7.44 0.000 .7350339 1.260957
_cons | -.5287625 .0669093 -7.90 0.000 -.6599023 -.3976226
-------------------------------------------------------------------------------