Quiero crear un juguete de supervivencia (tiempo para el evento) de datos que está a la derecha censurado y sigue alguna distribución de riesgos proporcionales y la constante de referencia de peligro.
He creado los datos de la siguiente manera, pero soy incapaz de obtener calcula los cocientes de riesgo que están cerca de los verdaderos valores después de la colocación de riesgos proporcionales de Cox modelo a los datos simulados.
¿Qué hice mal?
R códigos:
library(survival)
#set parameters
set.seed(1234)
n = 40000 #sample size
#functional relationship
lambda=0.000020 #constant baseline hazard 2 per 100000 per 1 unit time
b_haz <-function(t) #baseline hazard
{
lambda #constant hazard wrt time
}
x = cbind(hba1c=rnorm(n,2,.5)-2,age=rnorm(n,40,5)-40,duration=rnorm(n,10,2)-10)
B = c(1.1,1.2,1.3) # hazard ratios (model coefficients)
hist(x %*% B) #distribution of scores
haz <-function(t) #hazard function
{
b_haz(t) * exp(x %*% B)
}
c_hf <-function(t) #cumulative hazards function
{
exp(x %*% B) * lambda * t
}
S <- function(t) #survival function
{
exp(-c_hf(t))
}
S(.005)
S(1)
S(5)
#simulate censoring
time = rnorm(n,10,2)
S_prob = S(time)
#simulate events
event = ifelse(runif(1)>S_prob,1,0)
#model fit
km = survfit(Surv(time,event)~1,data=data.frame(x))
plot(km) #kaplan-meier plot
#Cox PH model
fit = coxph(Surv(time,event)~ hba1c+age+duration, data=data.frame(x))
summary(fit)
cox.zph(fit)
Resultados:
Call:
coxph(formula = Surv(time, event) ~ hba1c + age + duration, data = data.frame(x))
n= 40000, number of events= 3043
coef exp(coef) se(coef) z Pr(>|z|)
hba1c 0.236479 1.266780 0.035612 6.64 3.13e-11 ***
age 0.351304 1.420919 0.003792 92.63 < 2e-16 ***
duration 0.356629 1.428506 0.008952 39.84 < 2e-16 ***
---
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1
exp(coef) exp(-coef) lower .95 upper .95
hba1c 1.267 0.7894 1.181 1.358
age 1.421 0.7038 1.410 1.432
duration 1.429 0.7000 1.404 1.454
Concordance= 0.964 (se = 0.006 )
Rsquare= 0.239 (max possible= 0.767 )
Likelihood ratio test= 10926 on 3 df, p=0
Wald test = 10568 on 3 df, p=0
Score (logrank) test = 11041 on 3 df, p=0
pero los verdaderos valores se establecen como
B = c(1.1,1.2,1.3) # hazard ratios (model coefficients)