Posible duplicado:
|G|>2|G|>2 implica GG tiene un automorfismo no trivial
Estoy haciendo este ejercicio:
Buscar todos los grupos GG con Aut(G)={1}Aut(G)={1} .
Lo que me ha quedado claro es que el grupo GG debe ser un grupo abeliano. Porque tendremos G=Z(G)G=Z(G) y veo que al menos todos ϕg(x)=g−1xgϕg(x)=g−1xg son sólo identidad. Se agradece cualquier ayuda.