Terminé el otro enfoque. El arreglo con un amplio radio $A$ y tres círculos de radio más pequeño $B,$ todos tangente a un círculo de radio de $R,$ da un cúbicos $$ R^3 - (A+2B) R^2 + A B R + A B^2 = 0. $$ For $A=7, B=3$ this gives $R \aprox 10.397547282.$ Note that the coefficient of $R^3$ is positive, when $R=0$ the result is positive, but when $R=A$ the result is negative (for $a>B>0$). So there is a negative root, an unsuitable root $0 < R < A,$ and finally the real thing when $R>A.$ Notice that, for $A=B=1,$ we get the correct $R=1+\sqrt 2,$ meaning the centers of the four small circles are on the corners of a square, and the center of the circumscribing circle is at the center of the same square, all very symmetric in that case.
It is possible for $(A,B,R)$ to come out integers, for example $(A=9,B=5,R=15)$ or $(A=32,B=11,R=44).$ These are in the infinite family $$ A = n^3 + 4 n^2 + 4 n = n (n+2)^2, B = n^2 + 3 n + 1, R = n^3 + 5 n^2 + 7 n + 2 = A + B + 1. $$
The $(9,5,15)$ arrangement is especially good for a diagram here, as there are many visible $30^\circ-60^\circ-90^\circ$ right triangles, as well as one with sides $14,11, 5 \sqrt 3$ where I drew a pale green line in pencil.
Umm. It turned out it was possible to solve the Diophantine equation for much larger values; it is obvious that $R | a B^2,$ and a little extra fiddling with unique factorization (I'm taking $\gcd(a,B)=1$) shows that $R | AB,$ so that $AB/R$ es un número entero, y la ecuación se convierte en
$$ R \cdot (A + 2 B - R) = (R + B) \cdot (AB/R). $$ Aquí están los primeros cien entero soluciones
A B R A+2B-R R+B AB/R
9 5 15 4 20 3
25 22 55 14 77 10
32 11 44 10 55 8
75 19 95 18 114 15
128 93 248 66 341 48
144 29 174 28 203 24
147 62 217 54 279 42
245 41 287 40 328 35
363 244 671 180 915 132
384 55 440 54 495 48
400 183 610 156 793 120
405 118 531 110 649 90
507 395 1027 270 1422 195
567 71 639 70 710 63
605 237 869 210 1106 165
784 505 1414 380 1919 280
800 89 890 88 979 80
845 404 1313 340 1717 260
847 190 1045 182 1235 154
867 847 2057 504 2904 357
1089 109 1199 108 1308 99
1183 363 1573 336 1936 273
1296 1043 2682 700 3725 504
1440 131 1572 130 1703 120
1445 906 2567 690 3473 510
1521 278 1807 270 2085 234
1536 755 2416 630 3171 480
1568 435 2030 408 2465 336
1575 596 2235 532 2831 420
1805 1253 3401 910 4654 665
1859 155 2015 154 2170 143
1936 1845 4510 1116 6355 792
2023 895 3043 770 3938 595
2205 1672 4389 1160 6061 840
2352 181 2534 180 2715 168
2400 1477 4220 1134 5697 840
2475 382 2865 374 3247 330
2527 1266 4009 1050 5275 798
2560 597 3184 570 3781 480
2592 1045 3762 920 4807 720
2601 820 3485 756 4305 612
2645 2169 5543 1440 7712 1035
2925 209 3135 208 3344 195
3179 687 3893 660 4580 561
3249 1205 4579 1080 5784 855
3584 239 3824 238 4063 224
3645 3421 8397 2090 11818 1485
3703 2248 6463 1736 8711 1288
3757 502 4267 494 4769 442
3872 1967 6182 1624 8149 1232
3971 1076 5111 1012 6187 836
4205 4188 10121 2460 14309 1740
4335 271 4607 270 4878 255
4375 2871 7975 2142 10846 1575
4693 885 5605 858 6490 741
4704 3905 9940 2574 13845 1848
4761 2233 7337 1890 9570 1449
4851 1555 6531 1430 8086 1155
5103 3590 9693 2590 13283 1890
5184 305 5490 304 5795 288
5408 3249 9386 2520 12635 1872
5415 638 6061 630 6699 570
5600 993 6620 966 7613 840
5625 2888 9025 2376 11913 1800
5733 1364 7161 1300 8525 1092
5760 2513 8616 2170 11129 1680
5808 1745 7678 1620 9423 1320
5819 2130 8165 1914 10295 1518
5887 4411 11629 3080 16040 2233
6137 341 6479 340 6820 323
6144 5707 14048 3510 19755 2496
6727 5340 13795 3612 19135 2604
6875 2807 10025 2464 12832 1925
6877 1945 8947 1820 10892 1495
7200 379 7580 378 7959 360
7200 4939 13470 3608 18409 2640
7497 790 8295 782 9085 714
7569 4510 13079 3510 17589 2610
7623 6383 16203 4186 22586 3003
7744 1227 8998 1200 10225 1056
7840 4059 12628 3330 16687 2520
7935 1684 9683 1620 11367 1380
8019 3592 12123 3080 15715 2376
8064 2155 10344 2030 12499 1680
8112 3115 11570 2772 14685 2184
8125 2634 10975 2418 13609 1950
8379 419 8799 418 9218 399
8649 5489 15469 4158 20958 3069
8993 1353 10373 1326 11726 1173
9248 7085 18530 4888 25615 3536
9251 4491 14471 3762 18962 2871
9477 3437 13257 3094 16694 2457
9583 8835 21793 5460 30628 3885
9680 461 10142 460 10603 440
10051 958 11017 950 11975 874
10240 6061 17632 4730 23693 3520
10571 5510 17081 4510 22591 3410
10625 2036 12725 1972 14761 1700
10647 10256 24999 6160 35255 4368
10816 2605 13546 2480 16151 2080
A B R A+2B-R R+B AB/R