Deje $w(x,y,z)$ se fija campo de vectores en $\mathbb{R}^3$. ¿Cuáles son las soluciones de la ecuación $$ \nabla \cdot f + w \cdot f = 0 \, ? $$ Tenga en cuenta que si $w = \nabla \phi $, entonces la ecuación anterior es equivalente a $$ \nabla \cdot e^\phi f) = 0, $$ para que las soluciones son de la forma $f = e^{-\phi} \nabla \times g$ para algunos arbitraria $g$.
Respuesta
¿Demasiados anuncios?Usted puede tratar de proceder a lo largo de las siguientes líneas: \begin{equation*} (\partial _{\mathbf{x}}+\mathbf{w})\cdot \mathbf{f}=0 \end{ecuación*} Caso especial $\mathbf{w}$ es constante. Entonces \begin{equation*} \exp [-\mathbf{w\cdot x}]\partial _{\mathbf{x}}\exp [+\mathbf{w\cdot x} ]=\partial _{\mathbf{x}}+\mathbf{w} \end{ecuación*} así \begin{eqnarray*} \exp [-\mathbf{w\cdot x}]\partial _{\mathbf{x}}\exp [+\mathbf{w\cdot x}% ]\cdot \mathbf{f} &=&0 \\ \partial _{\mathbf{x}}\cdot \{\exp [+\mathbf{w\cdot x}]\mathbf{f}\} &=&0 \\ \exp [+\mathbf{w\cdot x}]\mathbf{f} &\mathbf{=a}&+\partial _{\mathbf{x}% }\times \mathbf{b(x)} \\ \mathbf{f(x)} &=&\exp [-\mathbf{w\cdot x}]\{\mathbf{a}+\partial _{\mathbf{x}% }\times \mathbf{b(x)}\} \end{eqnarray*} En general, usted tiene que encontrar la $\mathbf{U}(\mathbf{x})$ ($3\times 3$ de la matriz) tal que \begin{equation*} \mathbf{U}^{-1}(\mathbf{x})\cdot \partial _{\mathbf{x}}\cdot \mathbf{U}(% \mathbf{x})=\partial _{\mathbf{x}}+\mathbf{w(x}) \end{ecuación*} Vamos \begin{eqnarray*} \mathbf{U}(\mathbf{x}) &=&\exp [\mathbf{A(x)}] \\ \partial _{\mathbf{x}}\cdot \mathbf{U}(\mathbf{x}) &=&\mathbf{U}(\mathbf{x}% )[\partial _{\mathbf{x}}+\{\partial _{\mathbf{x}}\cdot \mathbf{A(x)\}]} \\ \partial _{\mathbf{x}}\cdot \mathbf{A(x)} &=&\mathbf{w(x}) \end{eqnarray*} Entonces \begin{eqnarray*} (\partial _{\mathbf{x}}+\mathbf{w(x)})\cdot \mathbf{f} &=&\mathbf{U}^{-1}(% \mathbf{x})\cdot \partial _{\mathbf{x}}\cdot \{\mathbf{U}(\mathbf{x})\cdot \mathbf{f}\}=0 \\ \partial _{\mathbf{x}}\cdot \{\mathbf{U}(\mathbf{x})\cdot \mathbf{f}\} &=&0 \\ \mathbf{U}(\mathbf{x})\cdot \mathbf{f(x)} &=&\{\mathbf{a}+\partial _{\mathbf{ x}}\times \mathbf{b(x)}\} \\ \mathbf{f(x)} &=&\mathbf{U}^{-1}(\mathbf{x})\cdot \{\mathbf{a}+\partial _{ \mathbf{x}}\times \mathbf{b(x)}\} \end{eqnarray*}