Dividimos la suma en consideración en las tres sumas de términos positivos: $$\sum_{m=1}^\infty \sum_{n=1}^\infty \frac 1 {m^p+n^k}=\sum_{m=2}^\infty \sum_{n=2}^\infty \frac 1 {m^p+n^k}+\sum_{m=1}^\infty \frac 1 {m^p+1}+\sum_{n=2}^\infty \frac 1 {n^k+1}.$$ Si $p>1$ y $k>1$, entonces estas dos últimas series convergen. A continuación, $$ \sum_{m=2}^\infty \sum_{n=2}^\infty \frac 1 {m^p+n^k}\le \sum_{m=2}^\infty \sum_{n=2}^\infty \int_{m-1}^{m} \int_{n-1}^{n} \frac {dx\,dy} {x^p+y^k}=\int_1^\infty \int_1^\infty \frac {dx\, dy} {x^p+y^k}.$$ Ahora reemplazamos $$ \left\{ x={r}^{2/p} \left( \cos \left( \phi \right) \right) ^{2/p},y={r}^{2/k} \left( \sin \left( \phi \right) \right) ^{2/k} \right\}. $$ El código de Maple $$ with(VectorCalculus):$$ $$simplify(Jacobian([r^{2/p}*cos(phi)^{2/p}, r^{2/k}*sin(phi)^{2/k}], [r, phi], 'determinant')[2], trig, power);$$ calcula el Jacobiano $$4\,{r}^{-{\frac {pk-2\,k-2\,p}{pk}}} \left( \cos \left( \phi \right) \right) ^{-{\frac {p-2}{p}}} \left( \sin \left( \phi \right) \right) ^{-{\frac {-2+k}{k}}}{p}^{-1}{k}^{-1}. $$ Por lo tanto, $$ \int_1^\infty \int_1^\infty \frac {dx\, dy} {x^p+y^k}\le$$ $$\int_1^\infty r^{-{\frac {pk-2\,k-2\,p}{pk}}-2} \,dr\int_{\phi_1(r)}^{\phi_2(r)}\left( \cos \left( \phi \right) \right) ^{-{\frac {p-2}{p}}} \left( \sin \left( \phi \right) \right) ^{-{\frac {-2+k}{k}}}{p}^{-1}{k}^{-1}\,d\phi \le $$ $$ \int_1^\infty r^{-{\frac {pk-2\,k-2\,p}{pk}}-2} \,dr\int_{0}^{\pi/2}\left( \cos \left( \phi \right) \right) ^{-{\frac {p-2}{p}}} \left( \sin \left( \phi \right) \right) ^{-{\frac {-2+k}{k}}}{p}^{-1}{k}^{-1}\,d\phi. $$ Las desigualdades aparecen porque ampliamos la región de integración del cuadrante $\{(x,y):x \ge 1, y \ge 1 \}$ a $\{(r,\phi): r\ge 1, \phi \ge \phi_1(r)=\arcsin(1/r), \phi \le \phi_2(r)=\pi/2-\arcsin(1/r)\} \subset$ $ \{(r,\phi):r\ge 1,\, \phi \ge 0, \,\phi \le \pi/2\}.$ La integral $$ \int_0^{\pi/2}\left( \cos \left( \phi \right) \right) ^{-{\frac {p-2}{p}}} \left( \sin \left( \phi \right) \right) ^{-{\frac {-2+k}{k}}}{p}^{-1}{k}^{-1}\,d\phi$$ converge porque $p>1,\,k>1.$ La integral $$ \int_1^\infty r^{-{\frac {pk-2\,k-2\,p}{pk}}-2} \,dr$$ converge si $$\frac 1 p +\frac 1 k <1. $$