$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
De hecho, podemos usar el resultado\begin{equation}
\left.\sum_{n = 0}^{\infty}{2n \choose n}x^{n}
\,\right\vert_{\ \verts{x}\ <\ 1/4} =
{1 \over \root{1 - 4x}}\label{1}\tag{1}
\end{equation}
para evaluar la suma finita cuando no sabemos el 'telescópica cosas". Se requiere el uso de una generación de función:
\begin{align}
\mc{F}\pars{z} & \equiv
\sum_{n = 0}^{\infty}z^{n}\bracks{%
\sum_{m = 0}^{n}{1 \over 2^{2m}}{2m \choose m}} \iff
\sum_{m = 0}^{n}{1 \over 2^{2m}}{2m \choose m} = \bracks{z^{n}}\mc{F}\pars{z}\,,
\quad\color{#f00}{\verts{z} < 1}\label{2}\tag{2}
\end{align}
\begin{align}
\mc{F}\pars{z} & \equiv
\sum_{n = 0}^{\infty}z^{n}\bracks{%
\sum_{m = 0}^{n}{1 \over 2^{2m}}{2m \choose m}} =
\sum_{m = 0}^{\infty}{1 \over 4^{m}}{2m \choose m}
\sum_{n = m}^{\infty}z^{n} =
\bracks{\sum_{m = 0}^{\infty}\pars{z \over 4}^{m}{2m \choose m}}
\sum_{n = 0}^{\infty}z^{n}
\\[5mm] & =
{1 \over \root{1 - 4\pars{z/4}}}\,{1 \over 1 - z} = \pars{1 - z}^{-3/2} =
\sum_{n = 0}^{\infty}{-3/2 \choose n}\pars{-1}^{n}z^{n}
\qquad\pars{~\mbox{see expression}\ \eqref{1}~}
\\[5mm] & =
\sum_{n = 0}^{\infty}\bracks{{n + 1/2 \choose n}\pars{-1}^{n}}\pars{-1}^{n}z^{n} \end{align}
\begin{equation}
\mc{F}\pars{z} =
\sum_{n = 0}^{\infty}{n + 1/2 \choose n}z^{n}
\qquad\stackrel{\mrm{see\ expression}\ \eqref{2}}{\implies}\qquad
\bbox[15px,#ffe,border:1px dashed navy]{\ds{%
\sum_{m = 0}^{n}{1 \over 2^{2m}}{2m \choose m} = {n + 1/2 \choose n}}}
\end{equation}
La última expresión se puede reescribir como el OP informó respuesta
$\ds{{n + 1 \over 2^{2n + 1}}{2n + 2 \choose n + 1}}$ por medio de la $\ds{\Gamma}$-la Duplicación de la Fórmula.