$$I_1=\int_{0}^{1} \left(1-x^{50}\right)^{100} dx$$ and $$I_2=\int_{0}^{1} \left(1-x^{50}\right)^{101} dx$$ Then find $\frac{I_1}{I_2}$
He intentado restando $I_1$ $I_2$
$$I_1-I_2=\int_{0}^{1}\left(1-x^{50}\right)^{100}\left(1-(1-x^{50}\right))dx$$ lo
$$I_1-I_2=\int_{0}^{1} \left(1-x^{50}\right)^{100} x^{50} dx$$ Ahora usando Integración por Partes obtenemos
$$I_1-I_2= \left(1-x^{50}\right)^{100} \times \frac{x^{51}}{51}\bigg|_{0}^{1} -\int_{0}^{1} 100 \left(1-x^{50}\right)^{99} \times -50 x^{49} \times \frac{x^{51}}{51} dx$$ Así $$I_1-I_2=\frac{5050}{51} \times \int_{0}^{1}\left(1-x^{50}\right)^{99} x^{100} dx$$
Ahora$x^{100}=\left(1-x^{50}\right)^2-(1-x^{50}-x^{50})$, por lo que
$$\frac{51}{5050}(I_1-I_2)=\int_{0}^{1} \left(1-x^{50}\right)^{99} \times \left(\left(1-x^{50}\right)^2-(1-x^{50})+x^{50}\right)dx=I_2-I_1+\int_{0}^{1} \left(1-x^{50}\right)^{99} x^{50} dx$$
Necesidad de una ayuda para seguir adelante.