Consideran que esta es una adición a Ross en la respuesta. Encontrado por una secuencia de comandos de Python que corrió mientras yo cenaba.
$1 = 1^3$ (al menos 7 otras maneras)
$2 = 1^3 - 2^3 + 3^3 - 4^3 + 5^3 + 6^3 + 7^3 - 8^3 - 9^3 + 10^3 + 11^3 - 12^3$ (al menos 12 otras formas)
$3 = 1^3 - 2^3 + 3^3 + 4^3 + 5^3 + 6^3 - 7^3 + 8^3 - 9^3 + 10^3 - 11^3 - 12^3 + 13^3$ (al menos 6 otras formas)
$4 = -1^3 - 2^3 + 3^3 + 4^3 - 5^3 + 6^3 + 7^3 - 8^3$ (al menos 18 otras formas)
$5 = -1^3 + 2^3 + 3^3 - 4^3 + 5^3 - 6^3 + 7^3 + 8^3 - 9^3$ (al menos 6 otras formas)
$6 = 1^3 - 2^3 + 3^3 + 4^3 - 5^3 + 6^3 + 7^3 - 8^3$ (al menos 14 otras formas)
$7 = -1^3 + 2^3$ (al menos 12 otras formas)
$8 = 1^3 + 2^3 - 3^3 + 4^3 - 5^3 + 6^3 + 7^3 - 8^3 - 9^3 + 10^3 - 11^3 - 12^3 + 13^3 - 14^3 + 15^3$ (al menos 12 otras formas)
$9 = 1^3 + 2^3$ (al menos 13 otras formas)
$10 = 1^3 + 2^3 + 3^3 - 4^3 + 5^3 - 6^3 - 7^3 + 8^3 + 9^3 - 10^3 + 11^3 + 12^3 - 13^3 + 14^3 - 15^3$ (al menos 16 otras formas)
$11 = 1^3 + 2^3 - 3^3 + 4^3 - 5^3 + 6^3 - 7^3 - 8^3 + 9^3$ (al menos otras 5 formas)
$12 = -1^3 - 2^3 - 3^3 - 4^3 + 5^3 + 6^3 - 7^3 + 8^3 - 9^3 - 10^3 + 11^3$ (al menos 15 otras formas)
$13 = -1^3 + 2^3 + 3^3 - 4^3 - 5^3 + 6^3 + 7^3 - 8^3 - 9^3 + 10^3 - 11^3 + 12^3 + 13^3 - 14^3$ (posiblemente de otras maneras)
$14 = 1^3 - 2^3 - 3^3 - 4^3 + 5^3 + 6^3 - 7^3 + 8^3 - 9^3 - 10^3 + 11^3$ (al menos 9 otras formas)
$15 = -1^3 + 2^3 - 3^3 - 4^3 - 5^3 - 6^3 - 7^3 + 8^3 - 9^3 + 10^3$ (al menos 1 de otra forma)
$16 = 1^3 - 2^3 - 3^3 - 4^3 + 5^3 - 6^3 - 7^3 - 8^3 + 9^3 - 10^3 + 11^3$ (al menos otras 10 formas)
$17 = 1^3 + 2^3 - 3^3 - 4^3 - 5^3 - 6^3 - 7^3 + 8^3 - 9^3 + 10^3$ (al menos 6 otras formas)
$18 = -1^3 - 2^3 + 3^3$ (al menos 17 otras formas)
$19 = 1^3 - 2^3 - 3^3 + 4^3 - 5^3 + 6^3 - 7^3 + 8^3 + 9^3 - 10^3$ (al menos 8 otras formas)
$20 = 1^3 - 2^3 + 3^3$ (al menos 19 otras formas)
$21 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 - 6^3 - 7^3 - 8^3 + 9^3 + 10^3 - 11^3 - 12^3 + 13^3$ (al menos otras 5 formas)
$22 = 1^3 + 2^3 + 3^3 + 4^3 - 5^3 + 6^3 + 7^3 - 8^3$ (al menos otras 10 formas)
$23 = 1^3 + 2^3 + 3^3 + 4^3 - 5^3 - 6^3 + 7^3 + 8^3 - 9^3 + 10^3 - 11^3 - 12^3 + 13^3$ (al menos otras 5 formas)
$24 = 1^3 + 2^3 - 3^3 - 4^3 + 5^3 + 6^3 - 7^3 + 8^3 + 9^3 + 10^3 - 11^3 + 12^3 + 13^3 + 14^3 - 15^3 - 16^3$ (al menos 7 otras maneras)
Cada una de estas representaciones es la más corta posible.
El algoritmo creado una secuencia de conjuntos de $S_n$ con $S_0 = \{0\}$ y $S_n = \{x+n^3, x-n^3 : x \S_{n-1}\}$ para $n > 0$,
de modo que $S_1 = \{1, -1\}$, $S_2 = \{9, -7, 7, -9\}$, etc.
El algoritmo también se mantiene un seguimiento de la secuencia de signos que se usan para llegar a cada número en particular.