11 votos

Débil generador de facilitándole Feller

Deje $(T_t)_{t \geq 0}$ un Talador de semigroup y definir un operador lineal $(A,\mathcal{D}(A))$ $$\mathcal{D}(A) := \left\{u \in C_{\infty}(\mathbb{R}^d); \exists f \in C_{\infty} \forall x \in \mathbb{R}^d: f(x) = \lim_{t \to 0} \frac{T_t u(x)-u(x)}{t} \right\} \\ Au(x) := \lim_{t \to 0} \frac{T_t u(x)-u(x)}{t} \qquad (u \in \mathcal{D}(A))$$

($A$ es de débiles generador de la semigroup).

Ahora quiero mostrar que este generador es el generador en el sentido de la topología débil en $C_{\infty}(\mathbb{R}^d)$, es decir, que la convergencia está delimitado pointwise convergencia.

Deje $u \in \mathcal{D}(A)$. Puesto que (por definición) la secuencia es pointwise convergente, el único detalle es que para mostrar el acotamiento, es decir,

$$\sup_{t>0} \left\| \frac{T_t u-u}{t} \right\|_{\infty} < \infty$$

Bueno, ya que la secuencia es pointwise convergente tenemos $$\sup_{t > 0} \left|\frac{T_t u(x)-u(x)}{t} \right| < \infty$$ for fixed $x \in \mathbb{R}^d$. A hint says that one should apply the Banach-Steinhaus theorem, but I don't see how to apply this theorem here, because there are not even linear operators (note that $u$ es fija). Alguna sugerencia...?

Comentario de Un Talador de semigroup es una positividad de la conservación, el conservador, fuertemente continuo semigroup la satisfacción de las sub-propiedad de markov.

3voto

user36150 Puntos 8

Aquí es un boceto de cómo probar el resultado con el llamado (fuerte) el generador de la semigroup $(T_t)_{t \geq 0}$: Vamos a $$\begin{align} \mathcal{D}(A_s) &:= \left\{u \in C_{\infty}(\mathbb{R}^d); \exists f \in C_{\infty}(\mathbb{R}^d): \lim_{t \to 0} \left\| \frac{T_t u-u}{t} -f \right\|_{\infty} = 0 \right\} \\ A_s u &:= \lim_{t \to 0} \frac{T_t u-u}{t} \qquad (u \in \mathcal{D}(A_s)) \end{align}$$ (The limit is taken w.r.t to the sup-norm.) Then $(A_s,\mathcal{D}(A_s))$ is called the (strong) generator of $(T_t)_{t \geq 0}$. La idea es mostrar que el débil y el fuerte generador de coincidir. El siguiente teorema es muy útil:

Teorema Deje $(A_s,\mathcal{D}(A_s))$ el generador de un Talador de semigroup $(T_t)_{t \geq 0}$. Deje $(A,\mathcal{D}(A))$ una extensión de $(A_s,\mathcal{D}(A_s))$ tal que $$Au = u \Rightarrow u=0 \quad (u \in \mathcal{D}(A)) \tag{1}$$ Then $(Un,\mathcal{D}(A))= (A_s,\mathcal{D}(A_s))$.

Si hemos de ser capaces de demostrar que el débil generador de $(A,\mathcal{D}(A))$ satisface $(1)$ estaríamos acabados: Para $u \in \mathcal{D}(A) = \mathcal{D}(A_s)$ hemos $$\frac{T_t u-u}{t} \to Au \quad \text{uniformly}$$ hence in particular $$\sup_{t>0} \left\| \frac{T_t u-u}{t} \right\|_{\infty} < \infty$$

Así que eso es todo. Aquí es la parte restante de la prueba:

Lema Deje $(A,\mathcal{D}(A))$ a los débiles generador de un Talador de semigroup. Vamos $u \in \mathcal{D}(A)$, $x_0 \in \mathbb{R}^d$ tal que $u(x_0)=\sup_{x \in \mathbb{R}^d} u(x) \geq 0$. Entonces $a$Au(x_0) \leq 0$$ (i.e. $$ satisface el principio del máximo). En particular, $A$ es disipativo, es decir, $$\forall \lambda>0: \|\lambda \cdot u-Au\|_{\infty} \geq \lambda \cdot \|u\|_{\infty} \tag{2}$$

Esto muestra que el débil generador de $(A,\mathcal{D}(A))$ satisface $(1)$ (put $\lambda=1$$(2)$).

La literatura René L. Schilling/Lothar Partzsch: Movimiento Browniano de Una Introducción a los Procesos Estocásticos (Capítulo 7).

Comentario El dado de pista (es decir, la aplicación de Banach Steinhaus teorema) no fue la correcta, o al menos mucho más difícil que el creador de este ejercicio estaba esperando. Habría que aplicar de Banach Steinhaus para el espacio dual de $C_{\infty}$ (utilizando el hecho de que para la dirac medidas de $\delta_x$ el acotamiento está dada por la pointwise convergencia ... y algunos más consideraciones acerca de la (vagos) densidad de dirac medidas.)

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X