$$
\lim\limits_{x\to 0}\dfrac{e^x-1-x}{x^2} = \lim\limits_{x\to 0}\left(\dfrac{1}{e^x+1+x}\right)\lim\limits_{x\to 0}\dfrac{e^{2x}-(1+x)^2}{x^2} = \dfrac{1}{2}\lim\limits_{x\to 0}\left(4\dfrac{e^{2x}-1-2x}{4x^2}-1\right) = 2\lim\limits_{x\to 0}\left(\dfrac{e^{2x}-1-2x}{4x^2}\right)-\dfrac{1}{2} = 2\lim\limits_{x\to 0}\left(\dfrac{e^x-1-x}{x^2}\right)-\dfrac{1}{2}.
$$
Por lo tanto,
$$\lim\limits_{x\to 0}\dfrac{e^x-1-x}{x^2} = \dfrac{1}{2}\,.$$
Esto puede extenderse de una manera natural. Definir $s_{n}(x):=\sum\limits_{k=0}^{n-1}\dfrac{x^k}{k!}$ y observar el siguiente:
$$
\begin{eqnarray*}
\lim_{x\to0}\dfrac{e^x-s_{n}(x)}{x^n} &=& \lim_{x\to0}\left(\dfrac{1}{\sum\limits_{r=0}^{n-1}e^{rx}(s_n(x))^{n-1-r}}\right)\lim_{x\to0}\dfrac{e^{nx}-(s_n(x))^n}{x^n} \\ &&\ \\ \ \\ &=& \dfrac{1}{n}\left(\lim_{x\to0}\dfrac{e^{nx}-s_n(nx)-\frac{n^{n-1}-1}{(n-1)!}x^n-o(x^n)}{x^n}\right)\\ &&\ \\ \ \\&=&
n^{n-1}\lim_{x\to0}\left(\dfrac{e^{nx}-s_n(nx)}{(nx)^n}\right)-\frac{n^{n-1}-1}{n!}\,,
\end{eqnarray*}
$$
donde, después de la expansión, el polinomio $(s_n(x))^n = s_n(nx) + \frac{n^{n-1}-1}{(n-1)!}x^n + o(x^n)$. En consecuencia,
$$
\lim_{x\to0}\dfrac{e^x-s_n(x)}{x^n} = \dfrac{1}{n!}\,.
$$
Los anteriores argumentos requieren de la existencia de los límites principales de ser buscados. Dado que nuestro hipotético alumno no está armado con un sofisticado $\epsilon, \delta$ técnicas de análisis, es difícil ver cómo se podría proceder en la demostración de la existencia. En efecto, ¿cómo es que este alumno siquiera saben lo que es un límite, y no digamos la algebraica de las leyes que siguen por definición? Sin embargo, con estas preocupaciones en mente, podríamos al menos permitir a nuestros estudiantes con uno más, el átomo de la información: el intercambio de los límites para la clase particular de funciones que nos interesan aquí. Por lo tanto, nuestro alumno procede, un tanto mecánica, como sigue:
$$
\begin{eqnarray*}
\lim\limits_{x\to 0}\frac{e^{x}-s_n(x)}{x^n} &=& \lim\limits_{x\to 0}\lim\limits_{y\to 0}\frac{\left(e^{y}(\frac{e^{x}-1}{x})-\frac{1}{x}\Big(s_n(x+y)-s_n(y)\Big)\right)}{\Big(\sum\limits_{r=0}^{n-1}(x+y)^r y^{n-1-r}\Big)} \\ &&\ \\&=& \lim\limits_{y\to 0}\lim\limits_{x\to 0}\frac{\left(e^{y}(\frac{e^{x}-1}{x})-\frac{1}{x}\Big(s_n(x+y)-s_n(y)\Big)\right)}{\Big(\sum\limits_{r=0}^{n-1}(x+y)^r y^{n-1-r}\Big)} \\ &&\ \\&=& \frac{1}{n}\lim\limits_{y\to 0}\frac{\left(e^{y}-s_{n-1}(y)\right)}{y^{n-1}}\,.
\end{eqnarray*}$$
Así, mediante la aplicación sucesiva de estos intercambios, nuestro alumno deduce
$$
\lim\limits_{x\to 0}\frac{e^{x}-s_n(x)}{x^n} = \frac{1}{n!}\,.
$$