Le dan un totalmente de primaria a prueba de simplemente trabajar en el ring $\mathbb{C}[t]$ y el uso que se trata de un disco flash usb. Supongo que hay algunas soluciones de$$a(t)^3 + b(t)^3 = c(t)^3$$in $\mathbb{C}[t]$. Choose a solution $(a(t), b(t) c(t))$ such that the maximum $m > 0$ of the degrees of $$, $b$, $c$ is minimal possible among all solutions. Clearly, this choice ensures that $a(t)$, $b(t)$, $c(t)$ are coprime. Then we have$$a(t)^3 = c(t)^3 - b(t)^3 = (c(t) - b(t))(c(t) - \omega b(t)) (c(t) - \omega^2 b(t)),$$where $\omega$ is a third primitive root of unity. Now, we look at the factors $c(t) - b(t)$, $c(t) - \omega b(t)$. Suppose that they have a common factor $p(t)$. Considering their sum and difference, we conclude that $c(t)$ and $b(t)$ have a common factor too. Moreover, $p(t)$ is a factor of $a(t)$. Thus, $$, $b$, $c$ are not relatively prime, which is a contradiction. Repeating the same game with other pairs of factors, we see that all three factors $c(t) - b(t)$, $c(t) - \omega b(t)$, $c(t) - \omega^2 b(t)$ are pairwise coprime. Therefore,$$c(t) - b(t) = d_1(t)^3,\text{ }c(t) - \omega b(t) = d_2(t)^3,\text{ }c(t) - \omega^2b(t) = d_3(t)^3,\text{ where }d_1,\,d_2,\,d_3 \in \mathbb{C}[t].$$Note that$$\omega^2 + \omega + 1 = 0.$$Multiplying the second equation by $\omega$ and the third equation by $\omega^2$ and adding all three, we arrive at $$d_1(t)^3 + \omega d_2(t)^3 + \omega^2d_3(t)^3 = 0.$$Choosing $\eta_1$ and $\eta_2$ as any third roots of $-\omega$ and $-\omega^2$, respectively, and letting$$a_1 = d_1^3,\text{ }b_1 = \eta_1d_2^3,\text{ }c_1 = \eta_2d_2^3,$$we get$$a_1^3 = b_1^3 + c_1^3.$$By construction, at least one of $a_1$, $b_1$, $c_1$ is a nonconstant polynomial, and the maximum of their degrees is smaller than that of $a$, $b$, $c$. This is a contradiction to the choice of $a$, $b$, $c$.
En particular, podría alguien esquema de suministro de una prueba de la "mejor motivados prueba en la que ves a $\mathbb{CP}^1$ no pueden mapa holomorphically a un género $1$ curva" que menciona David Speyer en el enlace? Gracias.
Ver mi respuesta aquí.