Dado $$\underbrace{(666666666666\ldots)^2}_{n~\text{times}}+\underbrace{(888888888888\ldots)}_{n~\text{times}}$$
Ahora podemos escribir $$\underbrace{666666666666\ldots}_{n~\text{times}} = (6+6\cdot 10+6\cdot 10^2+\cdots+6\cdot 10^{n-1})$$
$$\displaystyle =6\left[\frac{10^n-1}{10-1}\right] = \frac{2}{3}\left[10^n-1\right]$$
Del mismo modo, podemos escribir $$\underbrace{88888888888\ldots}_{n~\text{times}} = (8+8\cdot 10+8\cdot 10^2+\cdots+8\cdot 10^{n-1})$$
$$\displaystyle =8\left[\frac{10^n-1}{10-1}\right] = \frac{8}{9}\left[10^n-1\right]$$
Así obtenemos $$\displaystyle \left\{\frac{2}{3}\left[10^n-1\right]\right\}^2+\frac{8}{9}\left[10^n-1\right] = \frac{4}{9}(10^n-1)^2+\frac{8}{9}(10^n-1)$$
Así obtenemos $$\displaystyle = \frac{4}{9}(10^n-1)\cdot \left[10^n-1+2\right] = \frac{4}{9}(10^{2n}-1)$$
Así que podemos escribir $$\displaystyle \frac{4}{9}(10^{2n}-1) = \underbrace{(444444444444\ldots)}_{2n~\text{times}}$$