Tengo un problema con esta integral $$I=\int_0^1\frac{\log(1-x)}{\sqrt{x-x^3}}dx.$$ Podría usted sugerir cómo evaluar?
Respuestas
¿Demasiados anuncios?Aquí es una prueba de Cleo respuesta.
Reescribir la integral como
$$ \begin{align*} I &= \int_0^1 \frac{\log(1-x)}{\sqrt{x}\sqrt{1-x^2}}dx \\ &= \int_0^1 \frac{\log(1-x^2)-\log(1+x)}{\sqrt{x}\sqrt{1-x^2}}dx \\ &= \int_0^1 \frac{\log(1-x^2)}{\sqrt{x}\sqrt{1-x^2}}dx-\int_0^1 \frac{\log(1+x)}{\sqrt{x}\sqrt{1-x^2}}dx \end{align*} $$ La primera integral puede ser calculada mediante el cálculo de una derivada de la función beta. $$ \begin{align*} &\;\int_0^1 \frac{\log(1-x^2)}{\sqrt{x}\sqrt{1-x^2}}dx \\ &\stackrel{y=x^2}{=}\frac{1}{2}\int_0^1 \frac{\log(1-y)}{y^{\frac{3}{4}}\sqrt{1-y}}dy \\ &= \frac{1}{2}\frac{\partial}{\partial \alpha}\left\{B\left(\frac{1}{4},\alpha \right)\right\}_{\alpha=\frac{1}{2}}\\ &= \frac{\sqrt{\pi}\Gamma\left(\frac{1}{4}\right)}{2\Gamma\left(\frac{3}{4} \right)}\left\{ \psi_0\left(\frac{1}{2} \right)-\psi_0\left(\frac{3}{4} \right)\right\} \\ &= \frac{\Gamma\left(\frac{1}{4} \right)^2}{4\sqrt{2\pi}}\left(2\log 2-\pi \right) \end{align*} $$
La otra integral puede evaluarse mediante la ecuación $(3.22)$ de este documento.
$$ \begin{align*} &\;\int_0^1 \frac{\log(1+x)}{\sqrt{x}\sqrt{1-x^2}}dx \\ &\stackrel{x=\sin^2 t}{=}2\int_0^{\frac{\pi}{2}}\frac{\log(1+\sin^2 t)}{\sqrt{1+\sin^2 t}}dt\\ &= \log(2) K(\sqrt{-1}) \\ &= \log(2)\frac{\Gamma\left(\frac{1}{4} \right)^2}{4\sqrt{2\pi}} \end{align*} $$ donde $K(k)$ es la integral elíptica completa de primera especie. Después de la combinación de todo, uno se
$$I=\frac{\Gamma\left(\frac{1}{4} \right)^2}{4\sqrt{2\pi}}\left(\log 2-\pi \right)\aprox -3.20998$$
Puede que no te guste esto, pero es casualmente similar:
$$1/4\int_{0}^{1}\frac{log(x)}{x^{3/4}(1-x)^{1/2}}dx-1/4\int_{0}^{1}\frac{log(x)}{x^{1/2}(1-x)^{1/2}}dx$$
Estos pueden ser resueltos con la función Beta, sin un montón de esfuerzo.
Ellos evalúan $$-\frac{\pi}{4}\beta(1/4,1/2)+\frac{\pi}{2}log(2)$$
$$a=\frac{-\pi^{5/2}\sqrt{2}}{4\Gamma^{2}(3/4)}+\frac{\pi}{2}log(2)$$
$$\aprox -3.029925329.....$$
Hay una forma cerrada de la expresión de esta integral, y estoy seguro de que ustedes lo disfruten $$\frac{3}{2} \pi \left(2 \text{Hypergeometric2F1}^{(0,0,1,0)}\left(\frac{3}{4},\frac{3}{4},1,-8\right)+\text {Hypergeometric2F1}^{(0,1,0,0)}\left(\frac{3}{4},\frac{3}{4},1,-8\right)+\text {Hypergeometric2F1}^{(1,0,0,0)}\left(\frac{3}{4},\frac{3}{4},1,-8\right)-\, _2F_1\left(\frac{3}{4},\frac{3}{4};1;-8\right) \log (4)\right)$$ Esta fue encontrado por un CAS (no me pregunten cómo llegar a esta maravilla !). El valor numérico es de $-3.209982474415127728669875$