Cómo calcular $$\int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx$$ Estoy interesado en más maneras de calcular esta integral.
Mis Pensamientos
\begin{align} \int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx&=\int_{0}^{1} \:\ln \left(x\right)\frac{x}{\left(x^2+1\right)^2}dx\\ &=\int_{0}^{1} \:\ln \left(x\right)\frac{x}{\left(x^2+1\right)^2}dx\\ \mathrm{Apply\:Integration\:By\:Parts}: \end{align}
$$\fbox{$u=\ln \left(x\right),\:\:u'=\frac{1}{x},\:\:v'=\frac{1}{\left(x^2+1\right)^2}x,\:\:v=-\frac{1}{2\left(x^2+1\right)}$ }$$
\begin{align} \int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx& =\ln \left(x\right)\left(-\frac{1}{2\left(x^2+1\right)}\right)\biggl|_{0}^{1}-\int_{0}^{1} \frac{1}{x}\left(-\frac{1}{2\left(x^2+1\right)}\right)dx\\ &=-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\biggl|_{0}^{1}+\int_{0}^{1} \:\frac{1}{2x\left(x^2+1\right)}dx\\ &=-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\biggl|_{0}^{1}+\dfrac{1}{2}\int_{0}^{1} \:\frac{1}{x\left(x^2+1\right)}dx\\ \end{align}
-
ahora vamos a calcular:
\begin{align} \int_{0}^{1} \frac{1}{x\left(x^2+1\right)}dx&=\int_{0}^{1} \frac{1}{x\left(x^2+1\right)}dx\\ &=\int_{0}^{1} \frac{1}{x}-\frac{x}{x^2+1}dx\\ &=\ln \left(x\right)\biggl|_{0}^{1}-\dfrac{1}{2}\int_{0}^{1} \frac{2x}{x^2+1}dx\\ &=\ln \left(x\right)\biggl|_{0}^{1}-\dfrac{1}{2}\int_{0}^{1} \frac{(x^2+1)'}{x^2+1}dx\\ &=\ln \left(x\right)\biggl|_{0}^{1}-\frac{1}{2}\ln \left(x^2+1\right)\biggl|_{0}^{1}\\ \int_{0}^{1} \frac{1}{x\left(x^2+1\right)}dx&=\left(\ln \left(x\right)-\frac{1}{2}\ln \left(x^2+1\right)\right)\biggl|_{0}^{1}\\ \end{align} a continuación, $$\fbox{$\int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx=-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\biggl|_{0}^{1}+\dfrac{1}{2}\left(\ln \left(x\right)-\frac{1}{2}\ln \left(x^2+1\right)\right)\biggl|_{0}^{1}$}$$
\begin{align} \int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx&=-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\biggl|_{0}^{1}+\dfrac{1}{2}\left(\ln \left(x\right)-\frac{1}{2}\ln \left(x^2+1\right)\right)\biggl|_{0}^{1} \\ &=\frac{1}{2}\left(\ln \left(x\right)-\frac{1}{2}\ln \left(x^2+1\right)\right)-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\biggl|_{0}^{1} \\ \end{align}
o el límite de \begin{align} \lim _{x\to \:0+}\left(\frac{1}{2}\left(\ln \left(x\right)-\frac{1}{2}\ln \left(x^2+1\right)\right)-\frac{\ln \left(x\right)}{2\left(x^2+1\right)}\right)&=\lim _{x\to \:0+}\left(\frac{2x^2\ln \left(x\right)-x^2\ln \left(x^2+1\right)-\ln \left(x^2+1\right)}{4\left(x^2+1\right)}\right)\\ &=\dfrac{0}{4}=0 \end{align} y $$\frac{1}{2}\left(\ln \left(1\right)-\frac{1}{2}\ln \left(1^2+1\right)\right)-\frac{\ln \left(1\right)}{2\left(1^2+1\right)}=\dfrac{-\ln(2)}{4} $$
Finalmente
$$\fbox{$\int_{0}^{1}\dfrac{x\ln(x)}{(x^2+1)^2}dx=\dfrac{-\ln(2)}{4} $} $$