$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Cuando $c = 1$, $\color{#0000ff}{\large{\rm S}\pars{n,1}} = \braces{\pars{n - 1}\bracks{\pars{n - 1} + 1}/2}/n = \color{#0000ff}{\large\pars{n - 1}/2}$.
Vamos a considerar el caso de $c \not= 1$:
\begin{align}
{\rm S}\pars{n, c} &= \sum_{i = 1}^{n - 1}{i \over ci + \pars{n-i}}
=
\sum_{i = 1}^{n - 1}{i \over \pars{c - 1}i + n}
=
{1 \over c- 1}\sum_{i = 1}^{n - 1}{i \over i + n/\pars{c - 1}}
\\[3mm]&=
{1 \over c- 1}\sum_{i = 1}^{n - 1}
\bracks{1 - {n/\pars{c - 1} \over i + n/\pars{c - 1}}}
={n - 1 \over c - 1} - {n \over \pars{c -1}^{2}}\sum_{i = 0}^{n - 2}
{1 \over i + n/\pars{c - 1} + 1}
\\[3mm]&=
{n - 1 \over c - 1} - {n \over \pars{c - 1}^{2}}
\braces{\Psi\pars{\bracks{{n \over c - 1} + 1} + n - 1} - \Psi\pars{{n \over c - 1} + 1}}
\end{align}
\begin{align}
\color{#0000ff}{\large{\rm S}\pars{n, c \not= 1}}
&= \sum_{i = 1}^{n - 1}{i \over ci + \pars{n-i}}
\\[3mm]&=\color{#0000ff}{\large{n \over c - 1} + {n \over \pars{c - 1}^{2}}
\bracks{\Psi\pars{{n \over c - 1}} - \Psi\pars{n\,{c \over c- 1}}}}
\end{align}
$\Psi\pars{z}$ $\it digamma$ función y hemos utilizado las identidades:
$$
\Psi\pars{x + m} = \Psi\pars{x} + \sum_{k = 0}^{m - 1}{1 \over x + k}\,,\qquad
\Psi\pars{1 + z} = \Psi\pars{z} + {1 \over z}
$$
Al $0 < c < 1$, la digamma funciones de los argumentos de ir a $-\infty$. Es conveniente usar el $\it\mbox{digamma reflexion formula}$:
$$
\Psi\pars{z} = \Psi\pars{1 - z} - \pi\cuna\pars{\pi z}
$$
$$\left\lbrace%
\begin{array}{rcl}
\Psi\pars{n \over c - 1}
& = &
\Psi\pars{1 + {n \over 1 - c}} + \pi\cot\pars{\pi n \over 1 - c}
=
\Psi\pars{n \over 1 - c} + {1 - c \over n} + \pi\cot\pars{\pi n \over 1 - c}
\\[1mm]
\Psi\pars{nc \over c - 1}
& = &
\Psi\pars{1 + {nc \over 1 - c}} + \pi\cot\pars{\pi nc \over 1 - c}
=
\Psi\pars{nc \over 1 - c} + {1 - c \over nc} + \pi\cot\pars{\pi nc \over 1 - c}
\end{array}\right.
$$
y
\begin{align}
{\rm S}\pars{n,c}
&=
-\,{1 \over c\pars{1 - c}}
\\[3mm]&+ {n \over \pars{c - 1}^{2}}\bracks{%
\Psi\pars{n \over 1 -c} - \Psi\pars{nc \over 1 - c}
+ \pi\cot\pars{\pi n \over 1 -c} - \pi\cot\pars{\pi nc \over 1 -c}}
\\[3mm]
\left.\vphantom{\LARGE A}{\rm S}\pars{n,c}\right\vert_{0\ <\ c\ < 1 \atop n\ \gg\ 1}
&\sim
-\,{1 \over c\pars{1 - c}} + {n \over \pars{c - 1}^{2}}\bracks{%
\ln\pars{1 \over c} + \pi\cot\pars{\pi n \over 1 -c}
-
\pi\cot\pars{\pi nc \over 1 -c}}
\end{align}
donde hemos utilizado la función digamma $\it\mbox{asymptotic behavior}$:
$\Psi\pars{z} \sim \ln\pars{z}$ al $\verts{z} \gg 1$. Observe que el $\cot$'s son los términos de "oscilante".
Observe que
$$
\pi\cuna\pars{\pi n \más de 1 -c} - \pi\cuna\pars{\pi nc \más de 1 -c}
=
-\,{\pi\sin\pars{n\pi}
\\sin\pars{\pi n/\bracks{1 -c}}\sin\pars{\pi nc/\bracks{1 -c}}}
$$
y se desvanece cuando
$n/\pars{1 - c}\ \mbox{and}\ nc/\pars{1 - c}\ \not\in {\mathbb N}$.