Supongamos B\neq0 :
\dfrac{d^2y}{dx^2}+\left(A-B(36+(2-x)^2)^{-\frac{1}{2}}\right)y=0
\dfrac{d^2y}{dx^2}+\biggl(A-\dfrac{B}{\sqrt{(x-2)^2+36}}\biggr)y=0
\sqrt{(x-2)^2+36}\dfrac{d^2y}{dx^2}+\left(A\sqrt{(x-2)^2+36}-B\right)y=0
Deje u=x-2 ,
A continuación, \dfrac{dy}{dx}=\dfrac{dy}{du}\dfrac{du}{dx}=\dfrac{dy}{du}
\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(\dfrac{dy}{du}\right)=\dfrac{d}{du}\left(\dfrac{dy}{du}\right)\dfrac{du}{dx}=\dfrac{d^2y}{du^2}
\therefore\sqrt{u^2+36}\dfrac{d^2y}{du^2}+\left(A\sqrt{u^2+36}-B\right)y=0
Deje v=\sqrt{u^2+36} ,
A continuación, \dfrac{dy}{du}=\dfrac{dy}{dv}\dfrac{dv}{du}=\dfrac{u}{\sqrt{u^2+36}}\dfrac{dy}{dv}
\dfrac{d^2y}{du^2}=\dfrac{d}{du}\biggl(\dfrac{u}{\sqrt{u^2+36}}\dfrac{dy}{dv}\biggr)=\dfrac{u}{\sqrt{u^2+36}}\dfrac{d}{du}\biggl(\dfrac{dy}{dv}\biggr)+\dfrac{36}{(u^2+36)^\frac{3}{2}}\dfrac{dy}{dv}=\dfrac{u}{\sqrt{u^2+36}}\dfrac{d}{dv}\biggl(\dfrac{dy}{dv}\biggr)\dfrac{dv}{du}+\dfrac{36}{v^3}\dfrac{dy}{dv}=\dfrac{u}{\sqrt{u^2+36}}\dfrac{d^2y}{dv^2}\dfrac{u}{\sqrt{u^2+36}}+\dfrac{36}{v^3}\dfrac{dy}{dv}=\dfrac{u^2}{u^2+36}\dfrac{d^2y}{dv^2}+\dfrac{36}{v^3}\dfrac{dy}{dv}=\dfrac{v^2-36}{v^2}\dfrac{d^2y}{dv^2}+\dfrac{36}{v^3}\dfrac{dy}{dv}
\therefore v\biggl(\dfrac{v^2-36}{v^2}\dfrac{d^2y}{dv^2}+\dfrac{36}{v^3}\dfrac{dy}{dv}\biggr)+(Av-B)y=0
\dfrac{(v+6)(v-6)}{v}\dfrac{d^2y}{dv^2}+\dfrac{36}{v^2}\dfrac{dy}{dv}+(Av-B)y=0
v(v+6)(v-6)\dfrac{d^2y}{dv^2}+36\dfrac{dy}{dv}+v^2(Av-B)y=0