Deje $|A|= a,\quad |B|= b,\quad |C|= c \quad$
$0 \le |A \cap B|=n_1 \le a$ o $b$ $\quad $ Y $\quad $ $a$ o $b \le |A \cup B|=u_1 \le a+b $
$\implies n_1 \le u_1$
$0 \le |B \cap C|=n_2 \le b$ o $c$ $\quad $ Y $\quad $ $b$ o $c \le |B \cup C|=u_2 \le b+c$
$\implies n_2 \le u_2$
$0 \le |A \cap C|=n_3 \le a$ o $c$ $\quad $ Y $\quad $ $a$ o $c \le |A \cup C|=u_3 \le a+c$
$\implies n_3 \le u_3$
Así tenemos
$\frac{n_1}{u_1} + \frac{n_2}{u_2} - \frac{n_3}{u_3} = \frac{n_1u_2u_3 + u_1n_2u_3 - u_1u_2n_3}{u_1u_2u_3}$
Caso 1: Si $n_i = u_i \quad \forall 1 \le i \le 3$, luego
$\frac{u_1u_2u_3 + u_1u_2u_3 - u_1u_2u_3}{u_1u_2u_3} = 1$
Caso 2: Si $n_i < u_i \quad \forall 1 \le i \le 3$, luego
$\frac{n_1u_2u_3 + u_1n_2u_3 - u_1u_2n_3}{u_1u_2u_3} < \frac{u_1u_2u_3 + u_1u_2u_3 - u_1u_2u_3}{u_1u_2u_3}$
$\frac{n_1u_2u_3 + u_1n_2u_3 - u_1u_2n_3}{u_1u_2u_3} < 1$