Una pista. \frac{1}{n} +\frac{1}{n} = \frac{1}{n} + \frac{1}{n+1}+\frac{1}{n(n+1)}.
Por ejemplo, digamos N=3 . Entonces podemos escribir: \begin{align*} 1 &= \frac{1}{4}+\frac{1}{4} + \frac{1}{4}+\frac{1}{4}\\ &= \frac{1}{4} + \frac{1}{5}+\frac{1}{20} + \frac{1}{5}+\frac{1}{20}+\frac{1}{5}+\frac{1}{20}\\ &= \frac{1}{4}+\frac{1}{5}+\frac{1}{20} + \frac{1}{6}+\frac{1}{30} + \frac{1}{21}+\frac{1}{420} + \frac{1}{6}+\frac{1}{30} + \frac{1}{21}+\frac{1}{420}\\ &= \frac{1}{4}+\frac{1}{5}+\frac{1}{20}+\frac{1}{6}+\frac{1}{30}+\frac{1}{21}+\frac{1}{420} + \frac{1}{7}+\frac{1}{42} + \frac{1}{31}\\ &\qquad\mathop{+}\frac{1}{930} + \frac{1}{22}+\frac{1}{462} + \frac{1}{421}+\frac{1}{176820}\\ &= \frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{30}+\frac{1}{31}+\frac{1}{42}\\ &\qquad\mathop{+}\frac{1}{420}+\frac{1}{421}+\frac{1}{462}+\frac{1}{930}+\frac{1}{176820}. \end{align*}