\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}
\ds{\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x
:\ {\large ?}}
{\tt\mbox{Besides}} mi respuesta anterior,
{\tt\mbox{we'll show another method to evaluate this integral.}}
\begin{align}&\color{#c00000}{%
\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x}
=-\ic\sgn\pars{a}\int_{0}^{\infty}\expo{-\pars{2\pi\ -\ \verts{a}\ic}x}\,{%
1 - \expo{-2\verts{a}x\ic} \over 1 - \expo{-2\pi x}}\,\dd x
\end{align}
Set \ds{\expo{-2\pi x} \equiv t\quad\imp\quad x = -\,{\ln\pars{t} \over 2\pi}}:
\begin{align}
&\color{#c00000}{%
\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x}
=-\ic\sgn\pars{a}\int_{1}^{0}t^{1\ -\ \verts{a}\,\ic/\pars{2\pi}}\,
{1 - t^{\verts{a}\ic/\pi} \over 1 - t}\,\pars{-\,{\dd t \over 2\pi t}}
\\[3mm]&=-\ic\,{\sgn\pars{a} \over 2\pi}\int_{0}^{1}
{t^{-\verts{a}\ic/\pars{2\pi}} - t^{\verts{a}\ic/\pars{2\pi}} \over 1 - t}\,\dd t
\\[3mm]&=-\ic\,{\sgn\pars{a} \over 2\pi}\,\bracks{%
\int_{0}^{1}{1 - t^{\verts{a}\ic/\pars{2\pi}} \over 1 - t}\,\dd t
-
\int_{0}^{1}{1 - t^{-\verts{a}\ic/\pars{2\pi}} \over 1 - t}\,\dd t}
\\[3mm]&=-\ic\,{\sgn\pars{a} \over 2\pi}\,\bracks{2\ic\,\Im
\int_{0}^{1}{1 - t^{\verts{a}\ic/\pars{2\pi}} \over 1 - t}\,\dd t}
={\sgn\pars{a} \over \pi}\,\Im\int_{0}^{1}
{1 - t^{\verts{a}\ic/\pars{2\pi}} \over 1 - t}\,\dd t\tag{1}
\end{align}
Ahora, vamos a utilizar la identidad {\bf\mbox{6.3.22}} ( \ds{\gamma} es el de Euler-Mascheroni Constante {\bf\mbox{6.1.3}} ):
\Psi\pars{z} + \gamma = \int_{0}^{1}{1 - t^{z - 1} \over 1 - t}\,\dd t
\etiqueta{${\bf\mbox{6.3.22}}$}
\begin{align}
&\color{#c00000}{%
\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x}
={\sgn\pars{a} \over \pi}\,\Im\Psi\pars{1 + {\verts{a} \over 2\pi}\,\ic}
\end{align}
Con la identidad de{\bf\mbox{6.3.13}}
\ds{\Im\Psi\pars{1 + \ic y}=
-\,{1 \over 2y} + {\pi \over 2}\,\coth\pars{\pi y}}, donde
\ds{y \in {\mathbb R}},
\begin{align}
&\color{#c00000}{%
\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x}
={\sgn\pars{a} \over \pi}\,\braces{-\,{1 \over 2\bracks{\verts{a}/\pars{2\pi}}} + {\pi \over 2}\,\coth\pars{\pi\,{\verts{a} \over 2\pi}}}
\end{align}
\color{#66f}{\large%
\int_{0}^{\infty}{\sin\pars{ax} \over \expo{\pi x}\sinh\pars{\pi x}}\,\dd x
=-\,{1 \over a} + \media\,\coth\pars{un \over 2}}
También, después de una integración por partes, la última integral en \pars{1} puede ser evaluado en términos de PolyLogarithm Funciones.