Este es otro camino.
Teorema. Deje $x$ ser un número real tal que $-1<x<1$ y el conjunto de
$$
Z(x):=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(i-1)! (j-1)!}{(i+j)!} x^{i+j}.
$$
Entonces
$$
Z(x)= 2 \:\mathrm{Li_2} (x) - \mathrm{Li_2} \left( x(2-x) \right) \tag1
$$
donde $\mathrm{Li_2}$ es el dilogarithm función tal que $\mathrm{Li_2}(x)=\displaystyle \sum_{n=1}^{\infty}\displaystyle \frac{x^{n}}{n^2}= - \displaystyle \int_{0}^{x}\,\displaystyle \frac{\log(1-t)}{t}\mathrm{d}t$.
Prueba. Observar que
$$
{\frac{(i-1)! (j-1)!}{(i+j)!}= \frac{\Gamma(i) \Gamma(j)}{(i+j) \Gamma(i+j)} = \frac{1}{i+j}\,B(i,j)=
\int_{0}^{1}\, \frac{t^{i-1}(1-t)^{j-1}}{i+j}\mathrm{d}t.}
$$
Deje $|x|<1$. Podemos obtener
$$
\begin{align*}
\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(i-1)! (j-1)!}{(i+j)!} x^{i+j} &= \sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\displaystyle \int_{0}^{1} \frac{t^{i-1}(1-t)^{j-1}}{i+j}dt \:x^{i+j}
\\
&= x^2 \int_{0}^{1} \sum_{j=1}^{\infty}\,(x(1-t))^{j-1}\sum_{i=1}^{\infty} \frac{(tx)^{i-1}}{i+j}\:\mathrm{d}t \\
&= x^2 \int_{0}^{1} \sum_{j=1}^{\infty}\,(x(1-t))^{j-1}(tx)^{-1-j}\sum_{i=j+1}^{\infty} \frac{(tx)^{i}}{i}\:\mathrm{d}t\\
&= x^2 \int_{0}^{1} \sum_{j=1}^{\infty}\,(x(1-t))^{j-1}(tx)^{-1-j}\int_{0}^{tx} \frac{u^{j}}{1-u}\:\mathrm{d}u\:\mathrm{d}t \\
&= -x \int_{0}^{1} \frac{\log(1-x + x u)}{1-x u} \:\mathrm{d}u \\
&= -x \int_{1/x - 1}^{1/x} \frac{ \log(1-\frac{x}{2-x }u) + \log(\frac{2-x}{x})}{u} \:\mathrm{d}u\\
&= 2 \: \mathrm{Li_2} (x) - \mathrm{Li_2} \left( x(2-x) \right)
\end{align*}$$
Ejemplo 1.
$$
\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(i-1)! (j-1)!}{(i+j)!}= \frac{\pi^2}{6}
$$ Put $x=1$ in $(1)$.
Ejemplo 2.
$$
\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}\frac{(i-1)! (j-1)!}{(i+j)!} \frac{1}{ \varphi^{2(i+j)}}= \frac{\pi^2}{30}-\ln^2 \varphi
$$ Put $x=1/\varphi^2$ in $(1)$, with $\varphi=\frac{1+\sqrt{5}}{2}$.
La proposición.
$$
\sum_{j=1}^{\infty}\sum_{i=1}^{\infty} \displaystyle \frac{(i-1)! (j-1)!}{(i+j)!} H_{i+j} = 3 \: \zeta(3) \tag2
$$
Prueba. A partir de la identidad
$$
1+x+\cdots+x^{i+j-1} = \frac{1 - x^{i+j}}{1 - x\,}, \qquad i\geq1,\,j\geq1, 0<x<1,
$$
escribimos
$$
H_{i+j} = \displaystyle \int_{0}^{1} \displaystyle \frac{1 - x^{i+j}}{1 - x\,}\: \mathrm{d}x.
$$
A continuación, el uso de $(1)$, obtenemos
$$
\begin{align} \sum_{j=1}^{\infty}\sum_{i=1}^{\infty} \frac{(i-1)! (j-1)!}{(i+j)!} \: H_{i+j} & =\int_{0}^{1} \frac{ Z(1) - Z(x)}{1 - x}\: \mathrm{d}x
\\ & = \int_{0}^{1} \ln(1-x)\left(Z(1) - 2 \: \mathrm{Li_2} (x) + \mathrm{Li_2} \left( x(2-x) \right) \right)'\: \mathrm{d}x \\& = 2 \int_{0}^{1} \dfrac{\ln^2 (1-x)}{2-x}\: \mathrm{d}x
\\ & = 2 \int_{0}^{1} \dfrac{\ln^2 x}{1+x}\: \mathrm{d}x \nonumber
\\ & = 2 \int_{0}^{1} \sum_{n=0}^{\infty}(-1)^{n} x^{n} \ln^2 x\: \mathrm{d}x
\\ & = 3 \: \zeta(3). \end{align}
$$