Comenzamos con la identidad clave:
$$\sum\limits_{j=1}^{n-k} \frac{(-1)^{j-1}}{j}\binom{n}{k+j} = \binom{n}{k}(H_n - H_k)$$
que se puede demostrar elementalmente por inducción en $n$ o de otra manera.
Así tenemos para nuestro caso especial: $\displaystyle \binom{2n}{n}(H_{2n} - H_n) = \sum\limits_{j=1}^{n} (-1)^{j-1}\frac{1}{j}\binom{2n}{n+j}$
La serie se descompone entonces en dos partes:
$$\displaystyle \sum\limits_{n=1}^{\infty} \binom{2n}{n} (H_{2n-1}- H_n)\frac{z^n}{n} = \underbrace{\sum\limits_{n=1}^{\infty} \binom{2n}{n} (H_{2n}- H_n)\frac{z^n}{n}}_{=A} - \frac{1}{2}\underbrace{\sum\limits_{n=1}^{\infty} \binom{2n}{n} \frac{z^n}{n^2}}_{ = B}$$
Evaluación de $A$ :
$$\begin{align}\sum\limits_{n=1}^{\infty} \binom{2n}{n} (H_{2n}- H_n)\frac{z^n}{n} & = \sum\limits_{n=1}^{\infty} \sum\limits_{j=1}^{n} (-1)^{j-1}\frac{1}{j}\binom{2n}{n+j}\frac{z^n}{n} \\ &= \sum\limits_{j=1}^{\infty} \frac{(-1)^{j-1}}{j}\sum\limits_{n=j}^{\infty} \binom{2n}{n+j}\frac{z^n}{n} \\ &= \sum\limits_{j=1}^{\infty} \frac{(-1)^{j-1}z^{j}}{j}\sum\limits_{m=0}^{\infty} \binom{2j+2m}{2j+m}\frac{z^m}{j+m} \\ &= \int_0^z \frac{1}{z}\sum\limits_{j=1}^{\infty} \frac{(-1)^{j-1}z^{j}}{j}\sum\limits_{m=0}^{\infty} \binom{2j+2m}{2j+m} z^{m} \,\mathrm{d}z \tag{*}\\ &= \int_0^z \frac{1}{z}\sum\limits_{j=1}^{\infty} \frac{(-1)^{j-1}z^j}{j}.\frac{4^j}{\sqrt{1-4z}(1+\sqrt{1-4z})^{2j}} \,\mathrm{d}z\\&= \int_0^z \frac{1}{z\sqrt{1-4z}}\log \left(1+\frac{4z}{(1+\sqrt{1-4z})^2}\right) \,\mathrm{d}z \\ &= -\int_0^z \frac{1}{z\sqrt{1-4z}}\log \left(\frac{1+\sqrt{1-4z}}{2}\right) \,\mathrm{d}z\end{align}$$
Considera, $\displaystyle f(z) = \log \left(\frac{1+\sqrt{1-4z}}{2}\right)$ entonces $\displaystyle f'(z) = \frac{1}{2z} - \frac{1}{2z\sqrt{1-4z}}$
Continuando el cómputo con la sustitución:
$$\begin{align}& = \int_0^z f(z)\left(2f'(z) - \frac{1}{z}\right)\,\mathrm{d}z \\&= \log^2 \left(\frac{1+\sqrt{1-4z}}{2}\right) - \int_0^z \frac{1}{z}\log \left(\frac{1+\sqrt{1-4z}}{2}\right)\,\mathrm{d}z\end{align}$$
Desde entonces,
$$\displaystyle \begin{align} \sum\limits_{n=1}^{\infty} \binom{2n}{n}z^n = \frac{1}{\sqrt{1-4z}} &\implies \sum\limits_{n=1}^{\infty} \binom{2n}{n}\frac{z^n}{n} = -2\log \left(\frac{1+\sqrt{1-4z}}{2}\right)\\ & \implies \sum\limits_{n=1}^{\infty} \binom{2n}{n}\frac{z^n}{n^2} = -2\int_0^z\frac{1}{z}\log \left(\frac{1+\sqrt{1-4z}}{2}\right)\,\mathrm{d}z =B \end{align}$$
Y también, $\displaystyle C(z) = \sum\limits_{n=1}^{\infty} \binom{2n}{n}\frac{z^n}{n+1} = \frac{1}{z}\int_0^z \frac{1}{\sqrt{1-4z}}\,\mathrm{d}z = \frac{1-\sqrt{1-4z}}{2z} = \frac{2}{1+\sqrt{1-4z}}$
De este modo, obtenemos nuestro resultado final:
$$\sum\limits_{n=1}^{\infty} \binom{2n}{n} (H_{2n-1}- H_n)\frac{z^n}{n} = \log^2 \left(\frac{1+\sqrt{1-4z}}{2}\right) = \log^2 (C(z))$$
En $(*)$ utilizamos el hecho de que: $\displaystyle \sum\limits_{m=0}^{\infty} \binom{p+2m}{p+m}z^m = \frac{2^p (1+\sqrt{1-4z})^{-p}}{\sqrt{1-4z}}$ para los enteros $p$ .
1 votos
¿Dónde has encontrado esta identidad?
1 votos
Yo trataría de diferenciar ambos lados con respecto a $x$ . De esta manera, tenemos que comprobar que el producto de dos series da $C(x)$ . Eso no debería ser demasiado difícil de demostrar por inducción.
0 votos
@AbouSalah: ¡Buena identidad! +1
0 votos
@AbouSalah: El RHS de tu expresión es presumiblemente erróneo. Podrías compararla con mi respuesta. Saludos cordiales,
0 votos
Hay un error en la propia pregunta, el LHS debería ser $\log^2 (C(x))$ no $2\log (C(x))$ .