Como comentario "ampliado", añadiendo a los posts anteriores, tenemos $$\frac{\ln 2}{\ln 5}\approx 0.43067655807339306$$
Las primeras "mejores aproximaciones" para ese decimal son (investigar el árbol de Stern-Brocot) $$[(2, 5, 0.4), (3, 7, 0.42857142857142855), (34, 79, 0.43037974683544306), (31, 72, 0.4305555555555556), (205, 476, 0.43067226890756305), (497, 1154, 0.4306759098786828), (643, 1493, 0.4306764902880107), (4647, 10790, 0.4306765523632993), (21306, 49471, 0.43067655798346505), (21306, 49471, 0.43067655798346505), (97879, 227268, 0.4306765580724079), (1740516, 4041353, 0.4306765580734967), (2034153, 4723157, 0.4306765580733395), (1936274, 4495889, 0.4306765580733866), (15392313, 35739844, 0.43067655807339283), (59632978, 138463487, 0.430676558073393)]$$ donde los pares son $(m,n,\text{decimal})$ para $5^m,2^n$ .
Y he roto mi ordenador intentando calcular el último decimal, así que volveré con las salidas de esos números...
Algunos resultados son $${5^{205}\over 2^{476}}=0.9967194951\dots$$ y $${5^{59632978}\over 2^{138463487}}=0.9999999850988389 \dots$$