Deje $x_1,x_2,\ldots,x_n > 0$ tal que $\dfrac{1}{1+x_1}+\cdots+\dfrac{1}{1+x_n}=1$. Demostrar la siguiente desigualdad. $$\sqrt{x_1}+\sqrt{x_2}+\cdots+\sqrt{x_n} \geq (n-1) \left (\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}+\cdots+\dfrac{1}{\sqrt{x_n}} \right ).$$
Intento
He intentado utilizar HM-GM y me metí $\left ( \dfrac{1}{x_1x_2\cdots x_n}\right)^{\frac{1}{2n}} \geq \dfrac{n}{\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}+\cdots+\dfrac{1}{\sqrt{x_n}}} \implies \dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_1}}+\cdots+\dfrac{1}{\sqrt{x_n}} \geq n(x_1x_2 \cdots x_n)^{\frac{1}{2n}}$. Pero me quedo atascado aquí y no sé si esto ayuda.