20 votos

¿Cómo demostrar la secuencia de Fibonacci con matrices?

¿Cómo lo demuestran? $$ \begin{pmatrix} 1 & 1\\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n\\ F_{n} & F_{n-1} \end{pmatrix}$$

33voto

Jean-Claude Arbaut Puntos 9403

Dejemos que

$$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Y los números de Fibonacci, definidos por

$$\begin{eqnarray} F_0&=&0\\ F_1&=&1\\ F_{n+1}&=&F_n+F_{n-1} \end{eqnarray}$$

Entonces, por inducción,

$$A^1=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix}$$

Y si por $n$ la fórmula es verdadera, entonces

$$A^{n+1}=A\,A^n=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix}=\begin{pmatrix} F_{n+1}+F_n & F_{n}+F_{n-1} \\ F_{n+1} & F_{n} \end{pmatrix}=\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_{n} \end{pmatrix}$$

Por lo tanto, el paso de inducción es verdadero, y por inducción, la fórmula es verdadera para todo $n>0$ .

8voto

DanielV Puntos 11606

$$\begin{align} F(n+1) &= 1\,F(n) + 1\,F(n-1)\\ F(n) &= 1\,F(n) + 0\,F(n-1)\\ \\ \begin{bmatrix} F(n+1) \\ F(n) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F(n) \\ F(n - 1) \end{bmatrix} \\ \begin{bmatrix} F(n+1) \\ F(n) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) \\ F(0) \end{bmatrix} \\ \\ \text{as well as} \\ \begin{bmatrix} F(n) \\ F(n-1) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(0) \\ F(-1) \end{bmatrix} \\ \\ \text{from which it follows}\\ \begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix} &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} F(1) & F(0) \\ F(0) & F(-1) \end{bmatrix} \\ \\ \text{and choosing} \\ F(1) &= 1 \\ F(0) &= 0 \\ F(-1) &= 1 \end{align}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X