Que $p\neq0$ y $j=1,2,\cdots,n$ y $x_j>0$ y $$\chi(p)=\left(\frac{1}{n}\sum_{j=1}^nx_j^p\right)^\frac{1}{p}.$$ Prove that $\chi$ es estrictamente creciente y sostener las siguientes afirmaciones
- $\lim\limits_{p\to0}\chi(p)=(x_1x_2\cdots x_n)^\frac{1}{n}$
- $\lim\limits_{p\to+\infty}\chi(p)=\max\{x_1,x_2,\cdots, x_n\}$
- $\lim\limits_{p\to-\infty}\chi(p)=\min\{x_1,x_2,\cdots, x_n\}$
¡No tengo ninguna idea para demostrar que!