$\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\expo}[1]{{\rm e}^{#1}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\pp}{{\cal P}}%
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert #1 \right\vert}
\newcommand{\yy}{\Longleftrightarrow}$
$\ds{%
{\cal I}
\equiv
\int_{0}^{\infty}
{x - 1
\más
\sqrt{\vphantom{\large A}2^{x} - 1\,}\,\ln\pars{2^{x} de {- 1}}\,\dd x:\ {\large ?}}$
Con el cambio de variables
$z \equiv 2^{x} - 1\yy x = \ln\pars{1 + z}/\ln\pars{2},\ {\cal I}$ se reduce a
$$
{\cal I}
=
{1 \over \ln^{2}\pars{2}}
\int_{0}^{\infty}{\ln\pars{1 + z} - \ln\pars{2} \over z^{1/2}\,\pars{1 + z}\,\ln\pars{z}}
\,\dd z
$$
Ahora, tenemos que dividir la integral a partir de $\pars{0, 1}$ y de $\pars{1, \infty}$. En el segundo, se hace el cambio a $z \a 1/z$ tal que nos deja con una integración de más de $\pars{0, 1}$:
\begin{align}
{\cal I}
&=
{1 \over \ln^{2}\pars{2}}
\int_{0}^{1}{\ln\pars{1 + z} - \ln\pars{2} \over z^{1/2}\,\pars{1 + z}\,\ln\pars{z}}
\,\dd z
+
{1 \over \ln^{2}\pars{2}}\int_{0}^{1}
{\ln\pars{1 + 1/z} - \ln\pars{2} \over z^{-1/2}\,\pars{1 + 1/z}\,\bracks{-\ln\pars{z}}}
\,{\dd z \sobre z^{2}}
\\[3 mm]&=
{1 \over \ln^{2}\pars{2}}
\int_{0}^{1}{\ln\pars{1 + z} - \ln\pars{2} \over z^{1/2}\,\pars{1 + z}\,\ln\pars{z}}
\,\dd z
-
{1 \over \ln^{2}\pars{2}}\int_{0}^{1}
{\ln\pars{1 + z} - \ln\pars{z} - \ln\pars{2}
\más
z^{1/2}\,\pars{1 + z}\,\ln\pars{z}}\,\dd z
\\[3 mm]&=
{1 \over \ln^{2}\pars{2}}
\int_{0}^{1}{1 \más de z^{1/2}\,\pars{1 + z}}
\,\dd z\,,
\quad
\pars{~\mbox{Vamos a}\quad r \equiv z^{1/2}\aa\ z = r^{2}~}
\\[3 mm]&=
{2 \\ln^{2}\pars{2}}
\underbrace{\quad\int_{0}^{1}{\dd r \más de r^{2} + 1}\quad}
_{\ds{\arctan\pars{1}\ =\ {\pi \más de 4}}}
=
\color{#ff0000}{\Large{\pi \más de 2\ln^{2}\pars{2}}}
\end{align}