El hecho de que $$\int_{0}^{1} \int_{0}^{1} \frac{1}{2-x^{2}-y^{2}} \, dx \, dy $$ is an integral representation of Catalan's constant ($G$), I was able to deduce that $$\int_{1+\sqrt{2}}^{\infty} \frac{\ln(1+x)}{1+x^{2}} \, dx = \int_{0}^{\pi/8} \ln(1+ \cot u) \, du = \frac{3G}{4} + \frac{\pi}{16} \, \ln 2\tag{1}.$$
Lo que es otra forma de probar la $(1)$ que de preferencia no implica la dilogarithm función?
EDITAR:
En respuesta al Dr. MV del comentario, el siguiente es cómo deduje $(1)$ a partir de esa representación integral de catalán constante.
$$ \begin{align} G&= \int_{0}^{1} \int_{0}^{1} \frac{1}{2-x^{2}-y^{2}} \, dx \, dy \\ &= \int_{0}^{1} \frac{1}{2-y^{2}} \int_{0}^{1} \frac{1}{1-\frac{x^{2}}{2-y^{2}}} \, dx \, dy \\ &= \int_{0}^{1} \frac{1}{\sqrt{2-y^{2}}} \, \text{artanh} \left(\frac{1}{\sqrt{2-y^{2}}} \right) \, dy \\ &= \int_{0}^{\pi/4} \text{artanh} \left(\frac{1}{\sqrt{2} \cos \theta} \right) \, d \theta \\ &= \frac{1}{2} \int_{0}^{\pi/4} \ln \left(\frac{\sqrt{2} \cos \theta +1}{\sqrt{2} \cos \theta -1} \right) \, d \theta \\ &= \frac{1}{2} \int_{0}^{\pi/4} \ln \left(\frac{(\sqrt{2} \cos \theta+1)^{2}}{2 \cos^{2} \theta -1} \right) \, d \theta \\ &=\int_{0}^{\pi/4} \ln (\sqrt{2} \cos \theta +1) \, d \theta - \frac{1}{2} \int_{0}^{\pi/4} \ln(\cos 2 \theta) \, d \theta \\ &= \int_{0}^{\pi/4} \ln\left(\sqrt{2} \cos \left(\frac{\pi}{4} - \phi\right)+1\right) \, d \phi - \frac{1}{4} \int_{0}^{\pi/2} \ln( \cos \tau) \, d \tau \\ &= \int_{0}^{\pi/4} \ln \left(\sin(\phi) + \cos(\phi)+1\right) \, d \phi - \frac{1}{4} \left(- \frac{\pi}{2} \, \ln 2 \right) \\ &= \int_{0}^{\pi/4} \ln (\sin \phi) \, d \phi + \int_{0}^{\pi/4} \ln \left(1+ \frac{1+ \cos \phi}{\sin \phi} \right) \, d \phi + \frac{\pi}{8} \, \ln 2 \\ &= - \frac{G}{2} - \frac{\pi}{4} \, \ln 2 + \int_{0}^{\pi/4} \ln \left(1+ \cot \frac{\phi}{2} \right) \, d \phi + \frac{\pi}{8} \, \ln 2 \\ &= - \frac{G}{2} - \frac{\pi}{8} \, \ln 2 + 2 \int_{0}^{\pi/8} \ln (1 + \cot u) \, du \end{align}$$