Tuve esta idea loca tratando de probar la de Pitágoras identidad trigonométrica;$$\sin^2x+\cos^2x=1$$by squaring the infinite Taylor series of $\el pecado x$ and $\cos x$. Pero le salió muy hermosa, la participación de la combinatoria de las identidades.
La prueba:
$$\sin x=\frac{x}{1}-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}\\\\\sin^2x=x^2-x^4\left (\frac{1}{1!3!}+\frac{1}{3!1!}\right )+x^6\left (\frac{1}{1!5!}+\frac{1}{3!3!}+\frac{1}{5!1!}\right )-...\\\\\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\\\\\cos^2x\!=\!1\!-\!x^2\left(\!\frac{1}{0!2!}\!+\!\frac{1}{2!0!}\!\right)\!+\!x^4\left(\!\frac{1}{0!4!}\!+\!\frac{1}{2!2!}\!+\!\frac{1}{4!0!}\!\right)\!-\!x^6\left(\!\frac{1}{0!6!}\!+\!\frac{1}{2!4!}\!+\!\frac{1}{4!2!}\!+\!\frac{1}{6!0!}\!\right)\!+...$$We should have shown that the series for both $\el pecado x$ and $\cos x$ converge absolutely (since we changed the arrangement), but it's obvious since the absolute value of all terms of $\sin x+\cos x$ add up to $e^x$.$$\sin^2x+\cos^2x=\\=1-x^2\left(\frac{1}{0!2!}-\frac{1}{1!1!}+\frac{1}{2!0!}\right)+x^4\left(\frac{1}{0!4!}-\frac{1}{1!3!}+\frac{1}{2!2!}-\frac{1}{3!1!}+\frac{1}{4!0!}\right)-x^6\left(\frac{1}{0!6!}-\frac{1}{1!5!}+\frac{1}{2!4!}-\frac{1}{3!3!}+\frac{1}{4!2!}-\frac{1}{5!1!}+\frac{1}{6!0!}\right)+...=\\\\=1+\sum_{n=1}^{\infty}(-1)^nx^{2n}\sum_{k=0}^{2n}\frac{(-1)^k\binom{2n}{k}}{(2n)!}$$ Ya podemos shw fácilmente que $\sum_{i=0}^n(-1)^i\binom{n}{i}=0$ por la expansión de $(1-1)^n$ usando Binom de la fórmula. Así:$$\sin^2x+\cos^2x=1-0+0-0+...=1$$
Creo que es hermoso, yo sólo quería preguntar, ¿ Taylor en la serie de esas funciones dependen de esta identidad? Porque si lo hacen, la prueba será circular.