Consideremos primero la siguiente expansión de $\pi \cot(\pi z)$ :
$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{n = 1}^\infty \frac{2z}{z^2 - n^2} \quad (z \neq 0, \pm 1, \pm 2,\ldots)$$
Sustitución de $z$ por $iz$ tenemos
$$-i\pi \coth(\pi z) = \frac{1}{iz} - \sum_{n = 1}^\infty \frac{2iz}{z^2 + n^2} = -i\left(\frac{1}{z} + 2\sum_{n = 1}^\infty \frac{z}{z^2 + n^2}\right)$$
Así,
$$\pi \coth(\pi z) = \frac{1}{z} + 2\sum_{n = 1}^\infty \frac{z}{z^2 + n^2} \quad (z \neq 0, \pm i, \pm 2i,\ldots)$$
Evaluar en $z = 1$ resultados en
$$\pi \coth(\pi) = 1 + 2\sum_{n = 1}^\infty \frac{1}{1 + n^2},$$
o
$$\sum_{n = 1}^\infty \frac{1}{1 + n^2} = \frac{\pi \coth(\pi) - 1}{2}.$$
Por lo tanto,
\begin {align} \sum_ {n = 0}^ \infty \frac {1}{1 + n^2} &= \frac { \pi\coth ( \pi )+ 1}{2} \\ &= \frac {1}{2} \left ( \frac { \pi (e^{ \pi } + e^{- \pi })}{e^{ \pi } - e^{- \pi }} + 1 \right ) \\ &= \frac {1}{2} \left ( \frac { \pi (e^{2 \pi } + 1)}{e^{2 \pi } - 1} + 1 \right ) \\ &= \frac {( \pi + 1)e^{2 \pi } + ( \pi - 1)}{2(e^{2 \pi } - 1)} \\ &= \frac {( \pi + 1)(e^{2 \pi } - 1) + 2 \pi }{2(e^{2 \pi } - 1)} \\ &= \frac { \pi + 1}{2} + \frac { \pi }{e^{2 \pi } - 1}. \\ \end {align}