Vamos
$$b_i=a_i-\dfrac54,$$
entonces
$$\sum_{i=1}^6b_i=\sum_{i=1}^6a_i-6\cdot\dfrac54 = 0,$$
$$\sum b_i^2=\sum_{i=1}^6a_i^2 - \dfrac52\sum_{i=1}^6a_i+\dfrac{25}{16}\cdot6 = \dfrac{15}8,$$
y podemos buscar condicional máximo de
$$\prod_{i=1}^6\left(b_i+\dfrac54\right).$$
Entonces podemos usar el método de multiplicadores de Lagrange.
Para eso, vamos a buscar el mayor valor de la función
$$f(\vec b, \lambda,\mu) = \prod_{i=1}^6\left(b_i+\dfrac54\right) + \lambda\sum_{i=1}^6b_i+\mu\left(\sum_{i=1}^6b_i^2-\dfrac{15}8\right),$$
la papelería puntos de acuerdo a cero derivados
$f'_{b_k}=0,\ f'_\lambda=0,\ f'_\mu=0,$ o
$$\begin{cases}
\left(b_k+\dfrac54\right)^{-1}\prod_{i=1}^6\left(b_i+\dfrac54\right) + \lambda + 2\mu b_k = 0\\[4pt]
\sum_{i=1}^6\ b_i \ = \ 0\\[4pt]
\sum_{i=1}^6\ b_i^2\ - \ \dfrac{15}8\ =\ 0\\[4pt]
k=1\dots6,
\end{casos}$$
$$\begin{cases}
\prod_{i=1}^6\left(b_i+\dfrac54\right) + \lambda\left(b_k+\dfrac54\right) + 2\mu\left(b_k+\dfrac54\right)b_k = 0\\[4pt]
\sum_{i=1}^6\ b_i \ = \ 0\\[4pt]
\sum_{i=1}^6\ b_i^2\ = \ \dfrac{15}8\\[4pt]
k=1\dots6.
\end{casos}$$
Suma por $k$ indexado ecuación da
$$6\prod_{i=1}^6\left(b_i+\dfrac54\right) + \lambda\dfrac{15}2 + \mu\dfrac{15}4 = 0,$$
o
$$\prod_{i=1}^6\left(b_i+\dfrac54\right) + \lambda\dfrac54 + \mu\dfrac58 = 0,$$
así tenemos
$$\begin{cases}
\lambda b_k + 2\mu\left(b_k^2+\dfrac54b_k-\dfrac5{16}\right) = 0\\[4pt]
\sum_{i=1}^6\ b_i \ = \ 0\\[4pt]
\sum_{i=1}^6\ b_i^2\ = \ \dfrac{15}8\\[4pt]
k=1\dots6.
\end{casos}$$
Los valores de $\lambda$ $\mu$ puede ser arbitraria, pero las raíces de producción constante. Así
$$\begin{cases}
(b_k=n)\vee(b_k=p)\\[4pt]
np=-\dfrac5{16}\\[4pt]
n<0,\ p>0\\[4pt]
\sum_{i=1}^6\ b_i \ = \ 0\\[4pt]
\sum_{i=1}^6\ b_i^2\ = \ \dfrac{15}8\\[4pt]
k=1\dots6,
\end{casos}$$
y para $b_1\leq b_2 \leq b_3 \leq b_4 \leq b_5 \leq b_6$ tenemos:
$$\left[\begin{split}
&b_1=b_2=b_3=b_4=b_5=b_6=n<0,\quad &6n=0,\quad &6n^2=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=b_4=b_5=n<0,\quad b_6=p=-\dfrac5{16n},\quad &5n=\dfrac5{16n},\quad &5n^2+p^2=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=b_4=n<0,\quad b_5=b_6=p=-\dfrac5{16n},\quad &4n=2\dfrac5{16n},\quad &4n^2+2p^2=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=n<0,\quad b_4=b_5=b_6=p=-\dfrac5{16n},\quad &3n=3\dfrac5{16n},\quad &3n^2+3p^2=\dfrac{15}8\\[4pt]
&b_1=b_2=n<0,\quad b_3=b_4=b_5=b_6=p=-\dfrac5{16n},\quad &2n=4\dfrac5{16n},\quad &2n^2+4p^2=\dfrac{15}8\\[4pt]
&b_1=n<0,\quad b_2=b_3=b_4=b_5=b_6=p=-\dfrac5{16n},\quad &n=5\dfrac5{16n},\quad &n^2+5p^2=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=b_4=b_5=b_6=p>0,\quad &6p=0,\quad &6p^2=\dfrac{15}8,
\end{split}\right.$$
o
$$\left[\begin{split}
&b_1=b_2=b_3=b_4=b_5=b_6=n=0,\quad &6\cdot0=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=b_4=b_5=n=-\dfrac14<0,\quad b_6=p=\dfrac54,\quad &5\dfrac1{16}+\dfrac{25}{16}=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=b_4=n=-\sqrt{\dfrac5{32}},\quad b_5=b_6=p=\sqrt{\dfrac58},\quad &4\dfrac5{32}+2\dfrac58=\dfrac{15}8\\[4pt]
&b_1=b_2=b_3=-\dfrac{\sqrt5}4,\quad b_4=b_5=b_6=\dfrac{\sqrt5}4,\quad &3\dfrac5{16}+3\dfrac5{16}=\dfrac{15}8\\[4pt]
&b_1=b_2=n=-\dfrac{\sqrt5}2,\quad b_3=b_4=b_5=b_6=\dfrac{\sqrt5}8,\quad &2\dfrac54+4\dfrac5{64}=\dfrac{15}8\\[4pt]
&b_1=n=-\dfrac54,\quad b_2=b_3=b_4=b_5=b_6=p=\dfrac14,\quad &\dfrac{25}{16}+5\dfrac1{16}=\dfrac{15}8\\
&b_1=b_2=b_3=b_4=b_5=b_6=p=0,\quad &6\cdot0=\dfrac{15}8,
\end{split}\right.$$
Algunos sistemas son incompatibles.
Por lo tanto, el mayor valor de la meta de producción alcanza en uno de los puntos del conjunto
$$\begin{pmatrix}b_1\\[10pt]b_2\\[10pt]b_3\\[10pt]b_4\\[10pt]b_5\\[10pt]b_6\end{pmatrix}
\en\left\{
\begin{pmatrix}-\dfrac14\\-\dfrac14\\-\dfrac14\\-\dfrac14\\-\dfrac14\\\dfrac54\end{pmatrix},
\begin{pmatrix}-\sqrt{\dfrac5{32}}\\-\sqrt{\dfrac5{32}}\\-\sqrt{\dfrac5{32}}\\-\sqrt{\dfrac5{32}}\\\sqrt{\dfrac58}\\\sqrt{\dfrac58}\\\end{pmatrix},
\begin{pmatrix}-\dfrac{\sqrt5}4\\-\dfrac{\sqrt5}4\\-\dfrac{\sqrt5}4\\ \dfrac{\sqrt5}4\\\dfrac{\sqrt5}4\\\dfrac{\sqrt5}4\\\end{pmatrix},
\begin{pmatrix}-\dfrac54\\\dfrac14\\\dfrac14\\\dfrac14\\\dfrac14\\ \dfrac14\end{pmatrix}
\right\}$$
y es igual a
$$\max\left\{\left(-\dfrac14+\dfrac54\right)^5\left(\dfrac54+\dfrac54\right),
\left(-\sqrt{\dfrac5{32}}+\dfrac54\right)^4\left(\sqrt{\dfrac58}+\dfrac54\right)^2,
\left(-\dfrac{\sqrt5}4+\dfrac54\right)^3\left(\dfrac{\sqrt5}4+\dfrac54\right)^3,
\left(-\dfrac54+\dfrac54\right)\left(\dfrac14+\dfrac54\right)^5\right\}$$
$$=\max\left\{\dfrac52,\dfrac{125(247+14\sqrt{10})}{16384}
,\dfrac{125}{64},0\right\}=\dfrac52.$$
Eso significa que
$$\boxed{\prod_{n=1}^6a_i \leq\dfrac52}$$