12 votos

Condicional asignación de valores adyacentes celdas ráster?

Tengo un valor de trama:

m <- matrix(c(2,4,5,5,2,8,7,3,1,6,
         5,7,5,7,1,6,7,2,6,3,
         4,7,3,4,5,3,7,9,3,8,
         9,3,6,8,3,4,7,3,7,8,
         3,3,7,7,5,3,2,8,9,8,
         7,6,2,6,5,2,2,7,7,7,
         4,7,2,5,7,7,7,3,3,5,
         7,6,7,5,9,6,5,2,3,2,
         4,9,2,5,5,8,3,3,1,2,
         5,2,6,5,1,5,3,7,7,2),nrow=10, ncol=10, byrow = T)
r <- raster(m)
extent(r) <- matrix(c(0, 0, 10, 10), nrow=2)
plot(r)
text(r)

A partir de esta trama, ¿cómo puedo asignar valores (o valores de cambio) a las 8 celdas adyacentes de la celda actual de acuerdo con esta ilustración ? Me coloca un punto rojo dentro de la celda actual de esta línea de código:

points(xFromCol(r, col=5), yFromRow(r, row=5),col="red",pch=16)

enter image description here

Aquí, el resultado esperado será:

enter image description here

donde el valor de la celda actual (i.e, 5 en el valor de trama) se sustituye por 0.

En general, los nuevos valores para el 8 celdas adyacentes debe ser calculada de la siguiente manera:

Nuevo valor = promedio de los valores de las celdas contenidas en el rectángulo rojo * la distancia entre la celda actual (punto rojo) y la celda adyacente (es decir, sqrt(2) para diagonalmente adyacentes a las células o 1 en caso contrario)

Actualización

Cuando los límites de las células adyacentes que están fuera de la trama de los límites, necesito calcular nuevos valores para las celdas adyacentes que respetar las condiciones. Las células adyacentes que no respeten las condiciones será igual a "NA".

Por ejemplo, si la posición de referencia es c(1,1) en lugar de c(5,5) mediante el uso de [fila, col] la notación, sólo el nuevo valor en la esquina inferior derecha se puede calcular. Por lo tanto, el resultado esperado será:

     [,1] [,2] [,3]       
[1,] NA   NA   NA         
[2,] NA   0    NA         
[3,] NA   NA   New_value

Por ejemplo, si la posición de referencia es c(3,1), sólo los nuevos valores en la parte superior-derecha, derecha y abajo a la derecha de las esquinas puede ser calculado. Por lo tanto, el resultado esperado será:

     [,1] [,2] [,3]       
[1,] NA   NA   New_value         
[2,] NA   0    New_value         
[3,] NA   NA   New_value

Aquí está mi primer intento en esto mediante el uso de la función focal pero tengo cierta dificultad para hacer una automática de código.

Seleccione las celdas adyacentes

mat_perc <- matrix(c(1,1,1,1,1,
                     1,1,1,1,1,
                     1,1,0,1,1,
                     1,1,1,1,1,
                     1,1,1,1,1), nrow=5, ncol=5, byrow = T)
cell_perc <- adjacent(r, cellFromRowCol(r, 5, 5), directions=mat_perc, pairs=FALSE, sorted=TRUE, include=TRUE)
r_perc <- rasterFromCells(r, cell_perc)
r_perc <- setValues(r_perc,extract(r, cell_perc))
plot(r_perc)
text(r_perc)

si la celda adyacente se encuentra en la esquina superior izquierda de la celda actual

focal_m <- matrix(c(1,1,NA,1,1,NA,NA,NA,NA), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)*sqrt(2)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la mitad superior de la esquina de la celda actual

focal_m <- matrix(c(1,1,1,1,1,1,NA,NA,NA), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la esquina superior izquierda de la celda actual

focal_m <- matrix(c(NA,1,1,NA,1,1,NA,NA,NA), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)*sqrt(2)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la esquina izquierda de la celda actual

focal_m <- matrix(c(1,1,NA,1,1,NA,1,1,NA), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la esquina derecha de la celda actual

focal_m <- matrix(c(NA,1,1,NA,1,1,NA,1,1), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la esquina inferior izquierda de la celda actual

focal_m <- matrix(c(NA,NA,NA,1,1,NA,1,1,NA), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)*sqrt(2)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la parte inferior media de la esquina de la celda actual

focal_m <- matrix(c(NA,NA,NA,1,1,1,1,1,1), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

si la celda adyacente se encuentra en la esquina inferior derecha de la celda actual

focal_m <- matrix(c(NA,NA,NA,NA,1,1,NA,1,1), nrow=3, ncol=3, byrow = T)
focal_function <- function(x) mean(x,na.rm=T)*sqrt(2)
test <- as.matrix(focal(r_perc, focal_m, focal_function))

4voto

Chris McKee Puntos 1133

La función AssignValuesToAdjacentRasterCells a continuación, devuelve una nueva RasterLayer objeto con los valores que desee asignar a partir de la original del ráster de entrada. La función de comprobar si las células adyacentes de la referencia de posición dentro de ráster límites. También los mensajes de la pantalla si algunos obligado. Si yo necesita para mover la posición de referencia, puede escribir simplemente una iteración cambio de posición de entrada a la c(i,j).

La entrada de datos

# Load packages
library("raster")

# Load matrix data
m <- matrix(c(2,4,5,5,2,8,7,3,1,6,
              5,7,5,7,1,6,7,2,6,3,
              4,7,3,4,5,3,7,9,3,8,
              9,3,6,8,3,4,7,3,7,8,
              3,3,7,7,5,3,2,8,9,8,
              7,6,2,6,5,2,2,7,7,7,
              4,7,2,5,7,7,7,3,3,5,
              7,6,7,5,9,6,5,2,3,2,
              4,9,2,5,5,8,3,3,1,2,
              5,2,6,5,1,5,3,7,7,2), nrow=10, ncol=10, byrow = TRUE)

# Convert matrix to RasterLayer object
r <- raster(m)

# Assign extent to raster
extent(r) <- matrix(c(0, 0, 10, 10), nrow=2)

# Plot original raster
plot(r)
text(r)
points(xFromCol(r, col=5), yFromRow(r, row=5), col="red", pch=16)

La función

# Function to assigning values to the adjacent raster cells based on conditions
# Input raster: RasterLayer object
# Input position: two-dimension vector (e.g. c(5,5))

AssignValuesToAdjacentRasterCells <- function(raster, position) {

  # Reference position
  rowPosition = position[1]
  colPosition = position[2]

  # Adjacent cells positions
  adjacentBelow1 = rowPosition + 1
  adjacentBelow2 = rowPosition + 2
  adjacentUpper1 = rowPosition - 1
  adjacentUpper2 = rowPosition - 2
  adjacentLeft1 = colPosition - 1 
  adjacentLeft2 = colPosition - 2 
  adjacentRight1 = colPosition + 1
  adjacentRight2 = colPosition + 2

  # Check if adjacent cells positions are out of raster positions limits
  belowBound1 = adjacentBelow1 <= nrow(raster)
  belowBound2 = adjacentBelow2 <= nrow(raster)
  upperBound1 = adjacentUpper1 > 0
  upperBound2 = adjacentUpper2 > 0
  leftBound1 = adjacentLeft1 > 0 
  leftBound2 = adjacentLeft2 > 0 
  rightBound1 = adjacentRight1 <= ncol(raster)
  rightBound2 = adjacentRight2 <= ncol(raster) 

  if(upperBound2 & leftBound2) {

    val1 = mean(r[adjacentUpper2:adjacentUpper1, adjacentLeft2:adjacentLeft1]) * sqrt(2)

  } else {

    val1 = NA

  }

  if(upperBound2 & leftBound1 & rightBound1) {

    val2 = mean(r[adjacentUpper1:adjacentUpper2, adjacentLeft1:adjacentRight1])

  } else {

    val2 = NA

  }

  if(upperBound2 & rightBound2) {

    val3 = mean(r[adjacentUpper2:adjacentUpper1, adjacentRight1:adjacentRight2]) * sqrt(2)

  } else {

    val3 = NA

  }

  if(upperBound1 & belowBound1 & leftBound2) {

    val4 = mean(r[adjacentUpper1:adjacentBelow1, adjacentLeft2:adjacentLeft1])

  } else {

    val4 = NA

  }

  val5 = 0

  if(upperBound1 & belowBound1 & rightBound2) {

    val6 = mean(r[adjacentUpper1:adjacentBelow1, adjacentRight1:adjacentRight2])

  } else {

    val6 = NA

  }

  if(belowBound2 & leftBound2) {

    val7 = mean(r[adjacentBelow1:adjacentBelow2, adjacentLeft2:adjacentLeft1]) * sqrt(2)

  } else {

    val7 = NA

  }

  if(belowBound2 & leftBound1 & rightBound1) {

    val8 = mean(r[adjacentBelow1:adjacentBelow2, adjacentLeft1:adjacentRight1])

  } else {

    val8 = NA

  }

  if(belowBound2 & rightBound2) {

    val9 = mean(r[adjacentBelow1:adjacentBelow2, adjacentRight1:adjacentRight2]) * sqrt(2)

  } else {

    val9 = NA

  }

  # Build matrix
  mValues = matrix(data = c(val1, val2, val3,
                            val4, val5, val6,
                            val7, val8, val9), nrow = 3, ncol = 3, byrow = TRUE)    

  if(upperBound1) {

    a = adjacentUpper1

  } else {

    # Warning message
    cat(paste("\n Upper bound out of raster limits!"))
    a = rowPosition
    mValues <- mValues[-1,]

  }

  if(belowBound1) {

    b = adjacentBelow1

  } else {

    # Warning message
    cat(paste("\n Below bound out of raster limits!"))
    b = rowPosition
    mValues <- mValues[-3,]

  }

  if(leftBound1) {

    c = adjacentLeft1

  } else {

    # Warning message
    cat(paste("\n Left bound out of raster limits!"))
    c = colPosition
    mValues <- mValues[,-1]

  }

  if(rightBound1) {

    d = adjacentRight1

  } else {

    # Warning
    cat(paste("\n Right bound out of raster limits!"))
    d = colPosition
    mValues <- mValues[,-3]

  }

  # Convert matrix to RasterLayer object
  rValues = raster(mValues)

  # Assign values to raster
  raster[a:b, c:d] = rValues[,]  

  # Assign extent to raster
  extent(raster) <- matrix(c(0, 0, 10, 10), nrow = 2)

  # Return raster with assigned values
  return(raster)      

}

Ejecutar los ejemplos

# Run function AssignValuesToAdjacentRasterCells

# reference position (1,1)
example1 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(1,1))

# reference position (1,5)
example2 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(1,5))

# reference position (1,10)
example3 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(1,10))

# reference position (5,1)
example4 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(5,1))

# reference position (5,5)
example5 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(5,5))

# reference position (5,10)
example6 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(5,10))

# reference position (10,1)
example7 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(10,1))

# reference position (10,5)
example8 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(10,5))

# reference position (10,10)
example9 <- AssignValuesToAdjacentRasterCells(raster = r, position = c(10,10))

Parcela ejemplos

# Plot examples
par(mfrow=(c(3,3)))

plot(example1, main = "Position ref. (1,1)")
text(example1)
points(xFromCol(example1, col=1), yFromRow(example1, row=1), col="red", cex=2.5, lwd=2.5)

plot(example2, main = "Position ref. (1,5)")
text(example2)
points(xFromCol(example2, col=5), yFromRow(example2, row=1), col="red", cex=2.5, lwd=2.5)

plot(example3, main = "Position ref. (1,10)")
text(example3)
points(xFromCol(example3, col=10), yFromRow(example3, row=1), col="red", cex=2.5, lwd=2.5)

plot(example4, main = "Position ref. (5,1)")
text(example4)
points(xFromCol(example4, col=1), yFromRow(example4, row=5), col="red", cex=2.5, lwd=2.5)

plot(example5, main = "Position ref. (5,5)")
text(example5)
points(xFromCol(example5, col=5), yFromRow(example5, row=5), col="red", cex=2.5, lwd=2.5)

plot(example6, main = "Position ref. (5,10)")
text(example6)
points(xFromCol(example6, col=10), yFromRow(example6, row=5), col="red", cex=2.5, lwd=2.5)

plot(example7, main = "Position ref. (10,1)")
text(example7)
points(xFromCol(example7, col=1), yFromRow(example7, row=10), col="red", cex=2.5, lwd=2.5)

plot(example8, main = "Position ref. (10,5)")
text(example8)
points(xFromCol(example8, col=5), yFromRow(example8, row=10), col="red", cex=2.5, lwd=2.5)

plot(example9, main = "Position ref. (10,10)")
text(example9)
points(xFromCol(example9, col=10), yFromRow(example9, row=10), col="red", cex=2.5, lwd=2.5)

Figura ejemplo

exampleFigure

Nota: las células blancas significan NA valores

3voto

Dan Puntos 16

Para una matriz de operador en una pequeña matriz de esto tiene sentido y es manejable. Sin embargo, puede que desee realmente repensar su lógica cuando la aplicación de una función como esta para una gran trama. Conceptualmente, esto en realidad no seguimiento en general de la aplicación. Usted está hablando acerca de lo que ha sido tradicionalmente conocido como un bloque de estadística. Sin embargo, a una cuadra de la estadística es, por naturaleza, comenzando en una esquina de la trama y de la sustitución de los bloques de valores, dentro de un determinado tamaño de la ventana, con un operador. Normalmente este tipo de operador para la agregación de datos. Sería considerablemente más manejable si se pensaba en términos de condiciones de uso para calcular un valor central de una matriz. De esta manera usted puede fácilmente usar una focal de la función.

Sólo ten en cuenta que la trama focal función es la lectura en los bloques de datos que representan la focal de valores definidos en la vecindad basado en la matriz pasa a la w argumento. El resultado es un vector para cada barrio, y el resultado de la focal del operador es asignado a solo el centro de la celda y no a todo el vecindario. Piense en ello como el acaparamiento de una matriz que rodea a un valor de la celda, que operan en él, asignando un nuevo valor a la celda, a continuación, pasar a la siguiente celda.

Si usted asegúrese de que na.rm=FALSE, entonces el vector se representa siempre el exacto barrio (ie., el mismo vector de longitud) y se puede convertir en una matriz de objetos que pueden ser operados dentro de una función. Debido a esto, usted puede simplemente escribir una función que toma la espera de vectores, se convierte en una matriz, se aplica su barrio de la notación de la lógica y, a continuación, se asigna un único valor como resultado. Esta función puede ser transmitida a la trama::focal de la función.

Aquí es lo que estaría sucediendo en cada celda se basa en un sencillo de la coerción y la evaluación de los centros de la ventana. La "w" objeto sería esencialmente la misma definición de matriz que a uno le pase el w argumento en focal. Esto es lo que define el tamaño del subconjunto de vectores en cada coordinador de evaluación.

w=c(5,5)
x <- runif(w[1]*w[2])
x[25] <- NA
print(x)
( x <- matrix(x, nrow=w[1], ncol=w[2]) ) 
( se <- mean(x, na.rm=TRUE) * sqrt(2) )
ifelse( as.vector(x[(length(as.vector(x)) + 1)/2]) <= se, 1, 0) 

Ahora crear una función que puede ser aplicado a la focal se aplica la lógica anterior. En este caso, usted puede asignar el objeto se como valor o como una condición en algo así como "ifelse" para asignar un valor basado en una evaluación. Voy a añadir la ifelse declaración para ilustrar la manera de evaluar varias condiciones de la zona y aplicar una matriz de posición (barrio de la notación). En este ficticio función de la coacción de x a una matriz es completamente innecesario y no sólo para ilustrar cómo se llevaría a cabo. Se puede aplicar barrio de la notación de las condiciones directamente al vector, sin matriz de coerción, debido a que la posición en el vector aplicaría a su ubicación en el centro de la ventana y permanecen fijos.

f.rast <- function(x, dims=c(5,5)) {
  x <- matrix(x, nrow=dims[1], ncol=dims[2]) 
  se <- mean(x, na.rm=TRUE) * sqrt(2)
  ifelse( as.vector(x[(length(as.vector(x)) + 1)/2]) <= se, 1, 0)   
}  

Y aplicarlo a un ráster

library(raster)
r <- raster(nrows=100, ncols=100)
  r[] <- runif( ncell(r) )
  plot(r)

( r.class <- focal(r, w = matrix(1, nrow=w[1], ncol=w[2]), fun=f.rast) )
plot(r.class)  

2voto

Farid Cher Puntos 5306

Usted puede actualizar fácilmente ráster de valores por subseting ráster utilizando [fila,col] notación. Sólo tenga en cuenta que la fila y la columna de inicio desde la esquina superior izquierda de la trama; r[1,1] es la parte superior izquierda de píxeles índice y r[2,1] es el uno debajo de r[1,1].

enter image description here

# the function to update raster cell values
focal_raster_update <- function(r, row, col) {
  # copy the raster to hold the temporary values
  r_copy <- r
  r_copy[row,col] <- 0
  #upper left
  r_copy[row-1,col-1] <- mean(r[(row-2):(row-1),(col-2):(col-1)]) * sqrt(2)
  #upper mid
  r_copy[row-1,col] <- mean(r[(row-2):(row-1),(col-1):(col+1)])
  #upper right
  r_copy[row-1,col+1] <- mean(r[(row-2):(row-1),(col+1):(col+2)]) * sqrt(2)
  #left
  r_copy[row,col-1] <- mean(r[(row-1):(row+1),(col-2):(col-1)])
  #right
  r_copy[row,col+1] <- mean(r[(row-1):(row+1),(col+1):(col+2)])
  #bottom left
  r_copy[row+1,col-1] <- mean(r[(row+1):(row+2),(col-2):(col-1)]) * sqrt(2)
  #bottom mid
  r_copy[row+1,col] <- mean(r[(row+1):(row+2),(col-1):(col+1)])
  #bottom right
  r_copy[row+1,col+1] <- mean(r[(row+1):(row+2),(col+1):(col+2)]) * sqrt(2)
  return(r_copy)
}
col <- 5
row <- 5
r <- focal_raster_update(r,row,col)

dev.set(1)
plot(r)
text(r,digits=2)

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X