Generalizada autovector $\;u_1=\begin{pmatrix}a\\b\\c\end{pmatrix}\;$$\;\lambda=1\;$ :
$$Au_1=1\cdot u_1+v_1\iff \begin{pmatrix}a\\a+c\\b\end{pmatrix}=\begin{pmatrix}a\\b\\c\end{pmatrix}+\begin{pmatrix}0\\1\\1\end{pmatrix}\implies \begin{cases}b=c+1\\{}\\a+c=b+1\end{cases}\implies \begin{cases}a=2\\{}\\b=1\\{}\\c=0\end{cases}$$
$$\implies u_1=\begin{pmatrix}2\\1\\0\end{pmatrix}\;,\;\;\text{so define}\;\;P:=\begin{pmatrix}0&2&0\\1&1&1\\1&0&\!\!-1\end{pmatrix}\implies P^{-1}=\frac14\begin{pmatrix}\!\!-1&2&2\\2&0&0\\\!\!-1&2&\!\!-2\end{pmatrix}$$
y ahora:
$$P^{-1}AP=\frac14\begin{pmatrix}\!\!-1&2&2\\2&0&0\\\!\!-1&2&\!\!-2\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix}0&2&0\\1&1&1\\1&0&\!\!-1\end{pmatrix}=\begin{pmatrix}1&1&0\\0&1&0\\0&0&\!\!-1\end{pmatrix}\implies$$
$$A^{30}=P\begin{pmatrix}1&1&0\\0&1&0\\0&0&\!\!-1\end{pmatrix}P^{-1}$$
Ahora usted puede comprobar que la toma de los poderes de la anterior cuasi-diagonal de la matriz ( es decir, la Forma Canónica de Jordan de a $\;A\;$) es muy fácil, aunque no tan fácil como con la diagonal de las matrices, por supuesto.