Me gusta el triángulo de la suma de la técnica:
Tomemos, por ejemplo:
$\displaystyle \sum_{n=1}^\infty \frac{n^2}{2^n}$
$\frac{1}{2}+2\cdot\frac{1}{4}+3\cdot\frac{1}{8}+...=\displaystyle \sum_{n=1}^\infty \frac{n}{2^n}=2$
$\hspace{20pt} 2\cdot\frac{1}{4}+3\cdot\frac{1}{8}+...=\frac{1}{2}{\displaystyle \sum_{n=1}^\infty \frac{n+1}{2^n}}=\frac{1}{2}{\displaystyle \sum_{n=1}^\infty \frac{n}{2^n}+\frac{1}{2^n}}=\frac{1}{2}\cdot (2+1)$
$\hspace{53pt} 3\cdot\frac{1}{8}+...$=$\frac{1}{4}{\displaystyle \sum_{n=1}^\infty \frac{n+2}{2^n}}$=$\frac{1}{4}{\displaystyle \sum_{n=1}^\infty \frac{n}{2^n}+2\cdot\frac{1}{2^n}}=\frac{1}{4}\cdot (2+2)$
$\hspace{100pt} .......$
$ 2+\frac{1}{2}\cdot (2+1)+\frac{1}{4}\cdot (2+2)+...=\displaystyle \sum_{n=0}^\infty \frac{2+n}{2^n}=2\cdot \displaystyle \sum_{n=0}^\infty \frac{1}{2^n}+\displaystyle \sum_{n=1}^\infty \frac{n}{2^n}=4+2=6$
Pruébalo ahora?
$\displaystyle \sum_{n=1}^\infty \frac{n^3}{2^n}$
$\frac{1}{2}+4\cdot\frac{1}{4}+9\cdot\frac{1}{8}+...=\displaystyle \sum_{n=1}^\infty \frac{n^2}{2^n}$
$\hspace{20pt} 4\cdot\frac{1}{4}+9\cdot\frac{1}{8}+...=\frac{1}{2}{\displaystyle \sum_{n=1}^\infty \frac{(n+1)^2}{2^n}}$
$\hspace{53pt} 9\cdot\frac{1}{8}+...=\frac{1}{4}{\displaystyle \sum_{n=1}^\infty \frac{(n+2)^2}{2^n}}$
Sugerencia:
$\displaystyle \sum_{m=0}^\infty \frac{1}{2^m}\displaystyle \sum_{n=1}^\infty \frac{(n+m)^2}{2^n}$