$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x= {16 \over 243\root{3}}\,\pi^{5} + {605 \over 54}\,\zeta\pars{5}}$
Vamos a $\ds{\quad x_{n} = \expo{n\pi\ic/3}\,,\quad n = 0,1,2,3,4,5\quad}$ tal que \begin{align} {1 - x \over 1 - x^{6}}& =\pars{x - 1}\sum_{n = 0}^{5}{x_{n}/6 \over x - x_{n}} ={1 \over 6}\sum_{n = 0}^{5}x_{n} \pars{{x - x_{n} \over x - x_{n}} + {x_{n} - 1 \over x - x_{n}}} \\[3mm]&={1 \over 6}\,\underbrace{\sum_{n = 0}^{5}x_{n}}_{\ds{=\ 0}} +{1 \over 6}\sum_{n = 0}^{5}{x_{n}\pars{x_{n} - 1} \over x - x_{n}} ={1 \over 6}\sum_{n = 1}^{5}{x_{n}\pars{x_{n} - 1} \over x - x_{n}} ={1 \over 6}\sum_{n = -2}^{2}{x_{n + 3}\pars{x_{n + 3} - 1} \over x - x_{n + 3}} \\[3mm]&={1 \over 6}\sum_{n = -2}^{2}{x_{n}\pars{x_{n} + 1} \over x + x_{n}} \end{align}
Entonces, $$ \color{#c00000}{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x} ={1 \over 6}\sum_{n = -2}^{2}x_{n}\pars{x_{n} + 1} \color{#00f}{\int_{0}^{1}{\ln^{4}\pars{x} \over x + x_{n}}\,\dd x}\tag{1} $$
Evaluemos la integral: \begin{align} &\color{#00f}{\int_{0}^{1}{\ln^{k}\pars{x} \over x - a}\,\dd x} =-\int_{0}^{1}{\ln^{k}\pars{a\bracks{x/a}} \over 1 - x/a} \,{\dd x \over a} =-\int_{0}^{1/a}{\ln^{k}\pars{ax} \over 1 - x}\,\dd x \\[3mm]&=-\int_{0}^{1/a}\ln\pars{1 - x}k\ln^{k - 1}\pars{ax}\,{1 \over x}\,\dd x =k\int_{0}^{1/a}{{\rm Li}_{1}\pars{x} \over x}\,\ln^{k - 1}\pars{ax}\,\dd x \\[3mm]&=-k\pars{k - 1}\int_{0}^{1/a} {{\rm Li}_{2}\pars{x} \over x}\,\ln^{k - 2}\pars{ax}\,\dd x =\cdots \\[3mm]&=\pars{-1}^{r}\,{k! \over \pars{k - r - 1}!} \int_{0}^{1/a} {{\rm Li}_{1 + r}\pars{x} \over x}\,\ln^{k - r - 1}\pars{ax}\,\dd x =\cdots \\[3mm]&=\pars{-1}^{k - 1}k! \int_{0}^{1/a}{{\rm Li}_{k}\pars{x} \over x}\,\dd x =\pars{-1}^{k + 1}k!\,{\rm Li}_{k + 1}\pars{1 \over a} \end{align}
tal que $$ \color{#00f}{\int_{0}^{1}{\ln^{4}\pars{x} \over x - x_{n}}\,\dd x} =-24\,{\rm Li}_{5}\pars{-\,{1 \over x_{n}}} =-24\,{\rm Li}_{5}\pars{-x_{-n}} $$
Con expresión $\pars{1}$ : \begin{align} &\color{#c00000}{\int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x} =-4\sum_{n = -2}^{2}x_{n}\pars{x_{n} + 1}{\rm Li}_{5}\pars{-x_{-n}} \\[3mm]&=-8\,{\rm Li}_{5}\pars{-1} -8\,\Re\sum_{n = 1}^{2}x_{n}\pars{x_{n} + 1}{\rm Li}_{5}\pars{-x_{-n}} \\[3mm]&=-8\,{\rm Li}_{5}\pars{-1} -8\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/3}\pars{\expo{n\pi\ic/3} + 1} {\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}} \\[3mm]&=-8\,{\rm Li}_{5}\pars{-1} -8\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/2}\pars{\expo{n\pi\ic/6} + \expo{-n\pi\ic/6}} {\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}} \\[3mm]&=-8\,{\rm Li}_{5}\pars{-1} -16\,\Re\sum_{n = 1}^{2}\expo{n\pi\ic/2}\cos\pars{n\pi \over 6} {\rm Li}_{5}\pars{\expo{\bracks{3 - n}\pi\ic/3}} \\[3mm]&=-8\ \underbrace{{\rm Li}_{5}\pars{-1}} _{\ds{\color{#c00000}{-\,{15 \over 16}\,\zeta\pars{5}}}}\ +\ 8\root{3}\ \underbrace{\Im{\rm Li}_{5}\pars{\expo{2\pi\ic/3}}} _{\ds{\color{#c00000}{2\pi^{5} \over 729}}}\ +\ 8\ \underbrace{\Re{\rm Li}_{5}\pars{\expo{\pi\ic/3}}} _{\ds{\color{#c00000}{{25 \over 54}\,\zeta\pars{5}}}} \end{align}
Así que, $$\color{#66f}{\large% \int_{0}^{1}{1 - x \over 1 - x^{6}}\,\ln^{4}\pars{x}\,\dd x = {16 \over 243\root{3}}\,\pi^{5} + {605 \over 54}\,\zeta\pars{5}} $$