Quiero mostrar que la sustitución de $\partial_u \to D_\mu \equiv \partial_\mu + ieA_\mu$, o, equivalentemente, $p_\mu \to p_\mu - eA_\mu$ permite la introducción de las interacciones electromagnéticas. Aquí $e$ es la carga eléctrica de la partícula en cuestión $($$e=-|e|$ para un electrón$)$, e $A^\mu = (\Phi, \vec{A})$ es el vector potencial. Mediante la conversión de la ecuación de Dirac en el formulario$$[\vec{\alpha} \cdot (\vec{p} - e\vec{A}) + \beta m]\psi = (E - e\Phi)\psi$$to a second-order equation, and taking the low-energy limit, show that the interaction with the electromagnetic field gives rise to a change in energy in the presence of a magnetic field $\vec{B} = \nabla \times \vec{A}$ of the form$$\Delta E = -{{e}\over{2m}}\vec{\sigma} \cdot \vec{B}$$and hence implies a value of $g=2$ for the electron's magnetic moment $\vec{\mu}$ defined in terms of its spin $S$ as$$\vec{u} = g\left({e\over{2m}}\right)\vec{S}.$$Progress so far: The Dirac equation is $$(i\gamma^\mu D_\mu - m)\psi = (i\gamma^\mu(\partial_\mu + ieA_\mu) - m)\psi = 0.$$If we take $\gamma^0 = \beta$, $\gamma^i = \beta\alpha_i$, $\partial_\mu = (\partial_i, \nabla)$, and $A_\mu = (\Phi, -{\bf Un})$ then we can write this as $$[i\beta(\partial_t + ie\Phi) + i\beta\alpha \cdot (\nabla - ie{\bf A}) - m]\psi = 0$$or, since $\beta^2 = 1$,$$[i(\partial_t + ie\Phi) + i\alpha \cdot (\nabla - ie{\bf A}) - m\beta]\psi = 0.$$he intentado algunas cosas después de esto, pero no funcionó. Puede alguien darme un paso en la dirección correcta?
Respuesta
¿Demasiados anuncios?Lo que tiene es un buen comienzo. Si hacemos la habitual asignaciones ${\partial\over{\partial t}} \to -iE$ $\nabla \to i{\bf p}$ entonces tenemos$$(E - e\Phi)\psi = (\alpha \cdot ({\bf p} - e{\bf A}) + m\beta)\psi.$$Now, pick a particular representation$$\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},\text{ }\alpha_i = \begin{pmatrix} 0 & \sigma^i \\ \sigma^i & 0\end{pmatrix}.$$It is easy to check that these give the correct anti-commutation relations. Then if we denote$$\psi = \begin{pmatrix} \chi \\ \varphi\end{pmatrix}$$and plug this into the Dirac equation we obtain$$(E - e\Phi)\begin{pmatrix} \chi \\ \varphi\end{pmatrix} = \sigma \cdot ({\bf p} - e{\bf A})\begin{pmatrix} \varphi \\ \chi\end{pmatrix} + m\begin{pmatrix} \chi \\ -\varphi\end{pmatrix}.$$If we note that the nonrelativistic energy $E'$ is related to the relativistic by $E' = E - m$ then the equation becomes$$E'\begin{pmatrix} \chi \\ \varphi\end{pmatrix} = \sigma \cdot ({\bf p} - E{\bf A})\begin{pmatrix} \varphi \\ \chi\end{pmatrix} + e\Phi\begin{pmatrix} \chi \\ \varphi\end{pmatrix} - 2m\begin{pmatrix} 0 \\ \varphi\end{pmatrix}.$$In the nonrelativistic limit $E'\ll m$ so the second component of the above equation can be written$$\varphi = {{\sigma \cdot ({\bf p} - e{\bf A})\chi}\over{2m}}.$$We can then write the first component as a second order equation:$$E'\chi = \bigg\{{1\over{2m}}\sigma \cdot ({\bf p} - e{\bf A}) \sigma \cdot ({\bf p} - e{\bf A}) + e\Phi\bigg\}\chi.$$Since $\sigma^i\sigma^j = \delta^{ij} + i\epsilon^{ijk}\sigma^k$ we have $(\sigma \cdot {\bf a})(\sigma \cdot {\bf a}) = {\bf a} \cdot {\bf b} + i\sigma \cdot ({\bf} \times {\bf b})$. So,$$\sigma \cdot ({\bf p} - e{\bf A})\sigma \cdot ({\bf p} - e{\bf A}) = ({\bf p} - \epsilon{\bf A})^2 + i\epsilon^{ijk}\sigma^k(-i\partial_i-eA_i)(-i\partial_j - eA_j)$$$$=({\bf p} - e{\bf})^2 + i\epsilon^{ijk}\sigma^k(es decir,\partial_iA_j + ieA_i\partial_j)$$$$=({\bf p} - e{\bf A})^2 - e\epsilon^{ijk}\sigma^k((\partial_iA_j) + A_j\partial_i + A_i\partial_j)$$$$=({\bf p} - e{\bf})^2 - e\epsilon^{ijk}\sigma^k(\partial_iA_j)$$$$=({\bf p} - e{\bf A})^2 - e\sigma \cdot (\nabla \times{\bf A})$$$$=({\bf p} - e{\bf})^2 - e\sigma \cdot {\bf B}.$$We get that$$E'\chi = \bigg\{{{({\bf p} - e{\bf A})^2}\over{2m}} - {{e\sigma \cdot {\bf B}}\over{2m}} + e\Phi\bigg\}\chi.$$