8 votos

Probabilidad de que 2 OH equipos de la NFL ir a las 31 semanas de w/o gana en el mismo día

Yo lo hice de esta manera obvia, y mi amigo volvió con una idea mejor. Pueden ustedes juzgar o mejorar en ambos?

A mi manera:

Los Bengals de Cincinnati y Cleveland Browns ganaron el domingo por primera vez en 46 semanas (dice ESPN). Que parecía demasiado inverosímiles...

46 es demasiado alto, aunque. Si tomamos en cuenta bye semanas, la fuerza multinacional noches, head-to-head juegos, etc., tenemos 31 semanas, donde cada uno de ellos tenía una oportunidad de ganar.

Ahora podemos tomar sus respectivos registros desde el año 2009 (CLE: 11-31, CIN: 18-24) para calcular las probabilidades de ganar para cualquier semana dada. Esto le da una probabilidad de 11% que ganar los dos en la misma semana (asumir la independencia).

Así que...la probabilidad de que este 31 semanas de sequía? 2.5%...estadísticamente significativa pero no temblar la tierra. Para referencia, si estos equipos tenían incluso las probabilidades de ganar cualquier semana dada, la probabilidad se desplomaría a 0,01%!

Mi amigo respuesta:

hombre, este es el más sugerente post que he leído jamás...ahora me he pasado de los 30 minutos de pensar en él. de todos modos...probablemente estoy haciendo a mí mismo sonido como un idiota ahora mismo, pero no estoy seguro de que la independencia suposición es correcta. creo que una forma más precisa de pensar acerca de este problema es la clásica jarra y la bola de problema. así que, si hacemos caso omiso de la cabeza a los juegos de la cabeza y de la fuerza multinacional de juegos y todo eso, los bengals y los browns han jugado 42 partidos. ahora vamos a colocar en primer lugar el 11 triunfos por los browns en frascos separados. así que si ahora ponemos el 18 victorias por los bengals uno por uno en los frascos, hay un 31/42 probabilidad de que la primera victoria no acabe en un frasco con un marrones ganar...la segunda tiene una probabilidad de 30/41 (ya que no tiene la opción de terminar en el mismo frasco como un anterior bengals ganar)...tercero tiene un 29/40 posibilidad de no acabar en un frasco con un bengals ganar...y así sucesivamente. si nos ponemos a pensar de esa manera, las posibilidades de que los bengals de ganar y marrones ganar no terminan en el mismo frasco después de las 18 bengals victorias y 11 marrones victorias han sido puestas en frascos es ~.058%.

de todos modos...sólo pensé que podría ser un poco más precisa de la forma de pensar sobre ello ya que la probabilidad de que dos equipo con porcentajes de victorias por encima de .500 no tener victorias en el mismo fin de semana en el lapso que estuviera por encima de .500 es de un 0%...creo.

Que todo tiene sentido, excepto por el sentimiento intuitivo de que los juegos eran eventos independientes (suponiendo que ninguno de los dos equipos pensamiento acerca de los otros). Quién tiene la razón? Gracias!

144voto

Roel Puntos 9657

Existe un gran sesgo de selección. Tendría más sentido, para calcular la probabilidad de que cualquiera de los dos equipos va de las 31 semanas sin ambos equipos ganadores durante la misma semana en que sólo estos dos equipos.

Su forma de calcular parece mejor que la de su amigo. Suponiendo que la probabilidad de ganar un juego es 11/42 tiene más sentido que suponiendo que el equipo va a ganar exactamente 11 de los 42 juegos (si el equipo pierde su primer partido no son más probabilidades de ganar su segundo partido).

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X