Dado: $$ \text{S}= \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2.2^n} $$
Considere el siguiente Lema,
Lema:
$$ \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = -\dfrac{\pi^2}{12}$$
Prueba:
$ \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{ -\ln x }{1-x}\mathrm{d}x + \displaystyle \int_{0}^1 \dfrac{ -2\ln x }{x^2-1}\mathrm{d}x$
También,
$\displaystyle \int_{0}^1 \dfrac{ -\ln x }{1-x}\mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{ -\ln (1-x) }{x}\mathrm{d}x = \displaystyle \int_{0}^1 \dfrac{x+\frac{x^2}{2}+\frac{x^3}{3}+...}{x}\mathrm{d}x = \sum_{k=1}^\infty \dfrac{1}{k^2} = \frac{\pi^2}{6}$
y,
$\displaystyle \int_{0}^1 \dfrac{ \ln x }{x^2-1}\mathrm{d}x = \displaystyle \sum_{n=0}^{\infty} \int_{0}^1 x^{2n}.{\ln{x}} \ \mathrm{d}x $
$=- \displaystyle \sum_{n=0}^{\infty} {\dfrac{1}{(2n+1)^2}}$ (Usando Integración Por Partes)
$= \displaystyle \sum_{n=0}^{\infty} {\dfrac{1}{(2n)^2}} - \sum\limits_{n=0}^{\infty} {\dfrac{1}{n^2}}$
$=\dfrac{-3}{4}\zeta(2)= -\dfrac{\pi^2}{8}$
$\therefore \displaystyle \int_{0}^1 \dfrac{ \ln x }{x+1} \mathrm{d}x = \dfrac{\pi^2}{6} - \dfrac{\pi^2}{4} = -\dfrac{\pi^2}{12}$
Esto completa la prueba de nuestro Lema.
Ahora,
$ \text{S}= \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2.2^n} $
$= - \displaystyle \sum_{n=1}^{\infty} \left( \dfrac{2^n-1}{n^2.2^n} - \dfrac{1}{n^2} \right)$
$ = - \displaystyle {\ln 2} \sum_{n=1}^{\infty} \left(\dfrac{1}{n} \int_{0}^1 2^{-nx} \mathrm{d}x \right) + \dfrac{\pi^2}{6}$
$ = - \displaystyle {\ln 2} \int_{0}^1 \left(\sum_{n=1}^{\infty} \dfrac{1}{n} \times {2^{-nx}} \right)\mathrm{d}x + \dfrac{\pi^2}{6}$
$ = \displaystyle {\ln 2} \int_{0}^1 \ln \left( \dfrac{2^x - 1}{2^x} \right)\mathrm{d}x + \dfrac{\pi^2}{6}$
$ = \displaystyle {\ln 2} \int_{0}^1 \ln (2^x - 1)\ \mathrm{d}x + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$
Ahora, sustituyendo $(2^x - 1) = t$,,
$\text{S} = {\ln 2} \times \dfrac{1}{\ln 2} \displaystyle \int_{0}^1 \dfrac{ \ln t }{t+1} \mathrm{d}t + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$
$ = -\dfrac{\pi^2}{12} + \dfrac{\pi^2}{6} -\dfrac{\ln^2 2}{2}$ (Con el Lema)
$=\boxed{\dfrac{\pi^2}{12} - \dfrac{\ln^2 2}{2}}$