A pesar de que no tienen idea acerca de la sustitución de las condiciones iniciales y de contorno, tengo idea de la forma de la solución de este PDE, como yo capaz de resolver los similares del tipo de pregunta.
Creo que sólo interesante acerca de la solución de $t,S\geq0$ :
Deje $V(t,S)=F(t)G(S)$
A continuación, $-F'(t)G(S)+\dfrac{1}{2}\sigma^2S^2F(t)G''(S)+rSF(t)G'(S)-rF(t)G(S)=0$
$F'(t)G(S)=\dfrac{\sigma^2F(t)}{2}\left(S^2G''(S)+\dfrac{2r}{\sigma^2}SG'(S)-\dfrac{2r}{\sigma^2}G(S)\right)$
$\dfrac{2F'(t)}{\sigma^2F(t)}=\dfrac{S^2G''(S)+\dfrac{2r}{\sigma^2}SG'(S)-\dfrac{2r}{\sigma^2}G(S)}{G(S)}=-\xi^2-\dfrac{1}{4}\left(\dfrac{2r}{\sigma^2}-1\right)^2-\dfrac{2r}{\sigma^2}$
$\begin{cases}\dfrac{F'(t)}{F(t)}=-\dfrac{\sigma^2\xi^2}{2}-\dfrac{\sigma^2}{8}\left(\dfrac{2r}{\sigma^2}-1\right)^2-r\\S^2G''(S)+\dfrac{2r}{\sigma^2}SG'(S)+\biggl(\xi^2+\dfrac{1}{4}\left(\dfrac{2r}{\sigma^2}-1\right)^2\biggr)G(S)=0\end{cases}$
$\begin{cases}F(t)=c_3(\xi)e^{-t\Bigl(\frac{\sigma^2\xi^2}{2}+\frac{\sigma^2}{8}\bigl(\frac{2r}{\sigma^2}-1\bigr)^2+r\Bigr)}\\G(S)=\begin{cases}c_1(\xi)S^{\frac{1}{2}-\frac{r}{\sigma^2}}\sin(\xi\ln S)+c_2(\xi)S^{\frac{1}{2}-\frac{r}{\sigma^2}}\cos(\xi\ln S)&\text{when}~\xi\neq0\\c_1S^{\frac{1}{2}-\frac{r}{\sigma^2}}\ln S+c_2S^{\frac{1}{2}-\frac{r}{\sigma^2}}\text{when}~\xi=0\end{cases}\end{cases}$
$\therefore V(t,S)=C_1e^{-\Bigl(\frac{\sigma^2}{8}\bigl(\frac{2r}{\sigma^2}-1\bigr)^2+r\Bigr)t}S^{\frac{1}{2}-\frac{r}{\sigma^2}}\ln S+C_2e^{-\Bigl(\frac{\sigma^2}{8}\bigl(\frac{2r}{\sigma^2}-1\bigr)^2+r\Bigr)t}S^{\frac{1}{2}-\frac{r}{\sigma^2}}+\int_0^\infty C_3(\xi)e^{-t\Bigl(\frac{\sigma^2\xi^2}{2}+\frac{\sigma^2}{8}\bigl(\frac{2r}{\sigma^2}-1\bigr)^2+r\Bigr)}S^{\frac{1}{2}-\frac{r}{\sigma^2}}\sin(\xi\ln S)~d\xi+\int_0^\infty C_4(\xi)e^{-t\Bigl(\frac{\sigma^2\xi^2}{2}+\frac{\sigma^2}{8}\bigl(\frac{2r}{\sigma^2}-1\bigr)^2+r\Bigr)}S^{\frac{1}{2}-\frac{r}{\sigma^2}}\cos(\xi\ln S)~d\xi$