$$\int_a^bf(x)dx=\int_a^bf(a+b-x)dx,$ $
Si $$ \begin{eqnarray}I &=& \int^{\frac{\pi}{2}}_0 \frac{\sin^nx}{\sin^nx+\cos^nx} \,dx\\
&=& \int^{\frac{\pi}{2}}_0 \frac{\sin^n\left(\frac\pi2-x\right)}{\sin^n\left(\frac\pi2-x\right)+\cos^n\left(\frac\pi2-x\right)}\, dx\\
&=& \int^{\frac{\pi}{2}}_0 \frac{\cos^nx}{\cos^nx+\sin^nx}\, dx
\end{eqnarray} $$
$$\implies I+I=\int_0^{\frac\pi2}dx$$ assuming $\sin^NX+\cos^nx\ne0$ which is true as $0\le x\le \frac\pi2 $
Generalización : $$\text{If }J=\int_a^b\frac{g(x)}{g(x)+g(a+b-x)}dx, J=\int_a^b\frac{g(a+b-x)}{g(x)+g(a+b-x)}dx$ $
$$\implies J+J=\int_a^b dx$$ provided $g # (x) + g (a + b-x) \ne0$
Si $a=0,b=\frac\pi2$ y $g(x)=h(\sin x),$
$g(\frac\pi2+0-x)=h(\sin(\frac\pi2+0-x))=h(\cos x)$
Así, $J$ se convierte en $$\int_0^{\frac\pi2}\frac{h(\sin x)}{h(\sin x)+h(\cos x)}dx$ $