12 votos

De forma cerrada de $\int_0^1\left(\frac{\left(x^2+1\right)\arcsin(x)}{\sqrt{1-x^2}}+2x\ln\left(x^2+1\right)\right)\frac{\ln x}{x^3+x}\,dx$

He conjeturado la siguiente forma cerrada: $$ I = \int_0^1\left(\frac{\left(x^2+1\right)\arcsin(x)}{\sqrt{1-x^2}}+2x\ln\left(x^2+1\right)\right)\frac{\ ln x}{x^3+x}\,dx = -2\G\,\ln2, $$ donde $G$ es del catalán constante. Numercially $$ I \approx -1.2697979381877088371491554851603117320986537271546606092465\dots$$ Cómo demostrarlo?

10voto

Roger Hoover Puntos 56

Citando la célebre pregunta, tenemos que: $$ \sum_{n\geq 1}\frac{2^{2n} x^{2n}}{n^2\binom{2n}{n}}=2\,\arcsin^2(x)\tag{1}$$ por lo tanto: $$\begin{eqnarray*} \int_{0}^{1}\frac{\arcsin(x)}{\sqrt{1-x^2}}\cdot\frac{\log x}{x}\,dx &=& -\frac{1}{4}\sum_{n\geq 1}\frac{4^n}{n(2n-1)^2\binom{2n}{n}}\\&=&-\frac{1}{2}\sum_{n\geq 1}\frac{4^n\,B(n,n)}{(2n)^2(2n-1)^2}\\&=&-2\int_{0}^{1}\sum_{n\geq 1}\frac{\left(4x(1-x)\right)^{n-1}}{(2n)^2(2n-1)^2}\,dx.\tag{2}\end{eqnarray*}$$ Por otro lado, $ \log^2(1-x) = \sum_{n\geq 1}\frac{2H_{n-1}}{n}x^n $ implica: $$ \log^2(1+x^2) = \sum_{n\geq 1}\frac{2(-1)^n H_{n-1}}{n}x^{2n}\tag{3} $$ por lo tanto: $$ \int_{0}^{1}\frac{\log(1+x^2)\log(x)}{(1+x^2)x}\,dx = \frac{1}{4}\sum_{n\geq 1}\frac{(-1)^n H_{n-1}}{n^2}=-\frac{5}{32}\zeta(3)\tag{4}$$ y el problema se reduce a la evaluación de $(2)$. Tenemos:

$$\begin{eqnarray*} \sum_{n\geq 1}\frac{y^{n-1}}{(2n)^2(2n-1)^2}&=&\sum_{n\geq 1}\left(\frac{1}{(2n)^2}+\frac{1}{(2n-1)^2}+\frac{1}{n}-\frac{2}{2n-1}\right)y^{n-1}\tag{5}\\&=&\frac{\text{Li}_2(y)}{4y}-\frac{\log(1-y)}{y}-\frac{2\,\text{arctanh}(\sqrt{y})}{\sqrt{y}}+\frac{\text{Li}_2(\sqrt{y})-\text{Li}_2(-\sqrt{y})}{2\sqrt{y}}\end{eqnarray*}$$ y, de acuerdo con Mathematica: $$ \int_{0}^{1}\frac{\text{Li}_2(4x(1-x))}{x(1-x)}\,dx=2\pi^2\log 2-7\zeta(3), $$ $$ \int_{0}^{1}\frac{\log(1-4x(1-x))}{x(1-x)}\,dx = -\pi^2,$$ $$ \int_{0}^{\pi/2}\text{arctanh}(\sin \theta)\,d\theta = 2K,\tag{6} $$ y las dos últimas integrales de izquierda a calcular son: $$ I_+ = \int_{0}^{\pi/2}\text{Li}_2(\sin\theta)\,d\theta, \qquad I_-=\int_{0}^{\pi/2}\text{Li}_2(-\sin\theta)\,d\theta.$$ Pueden ser calculadas a través de la integración por partes, a continuación, mediante la explotación de la serie de Fourier de $t\cot t$$\log(\sin t),\log(\cos t)$. Para esto, véase esta cuestión.


Nota: aún me falta para completar esta respuesta debidamente explicar la última parte y comprobación de la identidad proporcionada por Mathematica. Ya es bastante para componer, os dejo esta respuesta, aunque no completos: tal vez alguien encuentra uno o más accesos directos.

8voto

Godsaur Puntos 121

Aplicar el evidente la sustitución de $x\mapsto\sin{x}$ para la primera integral $$I=\int^\frac{\pi}{2}_0\frac{x\ln(\sin{x})}{\sin{x}}\ {\rm d}x+\int^1_0\frac{2\ln{x}\ln(1+x^2)}{1+x^2}\ {\rm d}x$$ El último integral ha sido abordado aquí y es equivalente a \begin{align} \int^1_0\frac{2\ln{x}\ln(1+x^2)}{1+x^2}\ {\rm d}x=4\Im{\rm Li}_3(1-i)-2\mathbf{G}\ln{2}+\frac{3\pi^3}{16}+\frac{\pi}{4}\ln^2{2} \end{align} Como para la primera integral, \begin{align} \int^\frac{\pi}{2}_0\frac{x\ln(\sin{x})}{\sin{x}}\ {\rm d}x &=2\int^1_0\frac{\arctan{x}\ln\left(\frac{2x}{1+x^2}\right)}{x}\ {\rm d}x\\ &=2{\rm Ti}_2(1)\ln{2}+2\int^1_0\frac{\arctan{x}\ln{x}}{x}\ {\rm d}x-2\int^1_0\frac{\arctan{x}\ln(1+x^2)}{x}\ {\rm d}x\\ &=2\mathbf{G}\ln{2}-2\sum^\infty_{n=0}\frac{(-1)^n}{(2n+1)^3}+2\int^1_0\frac{\ln{x}\ln(1+x^2)}{1+x^2}\ {\rm d}x+4\int^1_0\frac{x\arctan{x}\ln{x}}{1+x^2}\ {\rm d}x \end{align} y la integral \begin{align} 4\int^1_0\frac{x\arctan{x}\ln{x}}{1+x^2}\ {\rm d}x=-8\Im{\rm Li}_3(1-i)-\frac{5\pi^3}{16}-\frac{\pi}{2}\ln^2{2} \end{align} también se ha establecido en el enlace de arriba. (Ambas integrales son cubiertos en la evaluación de las $\mathscr{J}_2$.) De ahí que la forma cerrada es de hecho \begin{align} I=-2\mathbf{G}\ln{2} \end{align}

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X