Se me pide que encuentre:
$$\int_0^{\frac{\pi}{6}} \frac{1}{\sin x-\cos x} \, dx$$
He intentado:
$$A=\int_0^{\frac{\pi}{6}} \frac{\sin x+\cos x}{\sin^2 x-\cos^2 x} \, dx$$ $$A=\int_0^{\frac{\pi}{6}} \frac{\sin x}{2\sin^2 x-1} \, dx + \int_0^{\frac{\pi}{6}} \frac{\cos x}{1-2\cos^2 x} \, dx$$ $$u=\sin x$$ $$du=\cos x\,dx$$ $$v=\cos x$$ $$dv=-\sin x \,dx$$ $$A=\int_0^{\frac{\pi}{6}} \frac{du}{2u^2-1} \, dx + \int_0^{\frac{\pi}{6}} \frac{dv}{2v^2-1} \, dx$$
Pero soy incapaz de avanzar.