En primer lugar, poner $s_n = 1+\dfrac{1}{2}+\cdots + \dfrac{1}{n}$, luego
$1+\dfrac{1}{2}+\cdots + \dfrac{1}{n} - \ln n > 0$ porque:
$1 = \displaystyle \int_{1}^2 1dx \geq \displaystyle \int_{1}^2 \dfrac{1}{x}dx$,
$\dfrac{1}{2} = \displaystyle \int_{2}^3 \dfrac{1}{2}dx \geq \displaystyle \int_{2}^3 \dfrac{1}{x}dx$, y
$.....$
$\dfrac{1}{n-1} = \displaystyle \int_{n-1}^n \dfrac{1}{n-1}dx\geq \displaystyle \int_{n-1}^n \dfrac{1}{x}dx$, y añadir estas integrales tenemos:
$s_n = s_{n-1} + \dfrac{1}{n} \geq \displaystyle \int_{1}^n \dfrac{1}{x}dx + \dfrac{1}{n}=\ln n + \dfrac{1}{n} > \ln n\Rightarrow t_n = s_n - \ln n > 0$