$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} \pi x\cot\pars{\pi x}&=1 + \sum_{n = 1}^{\infty}{2x^{2} \over x^{2} - n^{2}} =1 - 2x^{2}\sum_{n = 1}^{\infty}{1 \over n^{2}} - 2x^{4}\sum_{n = 1}^{\infty}{1 \over n^{4}} - 2x^{6}\sum_{n = 1}^{\infty}{1 \over n^{6}} - \cdots \end{align}
$$ \pi x^{1/2}\cot\pars{\pi x^{1/2}}=1 - 2x\sum_{n = 1}^{\infty}{1 \over n^{2}} - 2x^{2}\sum_{n = 1}^{\infty}{1 \over n^{4}} - 2x^{3}\sum_{n = 1}^{\infty}{1 \over n^{6}} - \cdots $$ Para $\verts{z} \sim 0$ : \begin{align} z\cot\pars{z}&={z \over \tan\pars{z}} \sim {z \over z + z^{3}/3 + 2z^{5}/15} ={1 \over 1 + z^{2}/3 + 2z^{4}/15} \\[3mm]&\sim 1 - \pars{{z^{2} \over 3} + {2z^{4} \over 15}} + \pars{{z^{2} \over 3} + {2z^{4} \over 15}}^{2} \sim 1 - {z^{2} \over 3} - {2z^{4} \over 15} + {z^{4} \over 9} =1 - {z^{2} \over 3} - {z^{4} \over 45} \end{align}
$$ \pi x^{1/2}\cot\pars{\pi x^{1/2}}\sim 1 - {\pi^{2} \over 3}\,x - {\pi^{4} \over 45}\,x^{2} $$
$$ \color{#00f}{\large\sum_{n = 1}^{\infty}{1 \over n^{4}}} = -\,\half\,\pars{-\,{\pi^{4} \over 45}} = \color{#00f}{\large{\pi^{4} \over 90}} $$