11 votos

Demostrando $~\prod~\frac{\cosh\left(n^2+n+\frac12\right)+i\sinh\left(n+\frac12\right)}{\cosh\left(n^2+n+\frac12\right)-i\sinh\left(n+\frac12\right)}~=~i$

¿Cómo podemos demostrar que

$${\LARGE\prod_{\Large n\ge0}}~\frac{\cosh\left(n^2+n+\dfrac12\right)+i\sinh\left(n+\dfrac12\right)}{\cosh\left(n^2+n+\dfrac12\right)-i\sinh\left(n+\dfrac12\right)}~=~i$$


Este es el problema $A12-1$ desde el Harvard College de Matemáticas del Examende Volumen,$4$, la Primavera de $2012$, el Capítulo $9$, la Página de $77$, propuesto por Moubinool Omarjee, París, Francia.


Huelga decir que, a pesar de pensar acerca de ti para el último par de semanas, todavía no he sido capaz de descifrarlo, en parte debido al hecho de que el argumento de $\cosh$ es distinta a la de $\sinh$. También he notado que, al completar el cuadrado, tenemos $n^2+n+\dfrac12=\left(n+\dfrac12\right)^2+\left(\dfrac12\right)^2$. De eso se trata, me temo.

9voto

Concrete Donkey Puntos 155

$$\begin{align}\frac{\cosh\left(n^2+n+\dfrac12\right)+i\sinh\left(n+\dfrac12\right)}{\cosh\left(n^2+n+\dfrac12\right)-i\sinh\left(n+\dfrac12\right)} &= \exp \left(2i\tan^{-1} \frac{\sinh \left(n+\frac{1}{2}\right)}{\cosh \left(n^2+n+\frac{1}{2}\right)}\right)\\&= \exp \left(2i\tan^{-1} \frac{e^{-n^2} - e^{-(n+1)^2}}{1+e^{-n^2}e^{-(n+1)^2}}\right)\\&= \exp{2i\left(\tan^{-1} e^{-n^2} - \tan^{-1} e^{-(n+1)^2}\right)}\end{align}$$

Por lo tanto, $$\prod_{n \ge 0}\frac{\cosh\left(n^2+n+\dfrac12\right)+i\sinh\left(n+\dfrac12\right)}{\cosh\left(n^2+n+\dfrac12\right)-i\sinh\left(n+\dfrac12\right)} = \exp{(2i\tan^{-1} 1)} = i$$

a través de la suma telescópica.

8voto

Marco Cantarini Puntos 10794

Otro (similar) es la utilización de esta identidad $ $ \frac{\cosh\left(n^{2}+n+\frac{1}{2}\right)+i\sinh\left(n+\frac{1}{2}\right)}{\cosh\left(n^{2}+n+\frac{1}{2}\right)-i\sinh\left(n+\frac{1}{2}\right)}=\frac{\left(e^{n^{2}}+i\right)\left(e^{\left(n+1\right)^{2}}-i\right)}{\left(e^{n^{2}}-i\right)\left(e^{\left(n+1\right)^{2}}+i\right)} \etiqueta{1} $$ to get $$\prod_{n\geq0}\frac{\cosh\left(n^{2}+n+\frac{1}{2}\right)+i\sinh\left(n+\frac{1}{2}\right)}{\cosh\left(n^{2}+n+\frac{1}{2}\right)-i\sinh\left(n+\frac{1}{2}\right)}=\prod_{n\geq0}\frac{\left(e^{n^{2}}+i\right)\left(e^{\left(n+1\right)^{2}}-i\right)}{\left(e^{n^{2}}-i\right)\left(e^{\left(n+1\right)^{2}}+i\right)}=\frac{1+i}{1-i}=i. $$ For proving $(1)$ note that $$\frac{\cosh\left(n^{2}+n+\frac{1}{2}\right)+i\sinh\left(n+\frac{1}{2}\right)}{\cosh\left(n^{2}+n+\frac{1}{2}\right)-i\sinh\left(n+\frac{1}{2}\right)}=\frac{\cosh\left(n^{2}+n+\frac{1}{2}\right)2e^{n^{2}+n+\frac{1}{2}}+ie^{n^{2}}\sinh\left(n+\frac{1}{2}\right)2e^{n+\frac{1}{2}}}{\cosh\left(n^{2}+n+\frac{1}{2}\right)2e^{n^{2}+n+\frac{1}{2}}-ie^{n^{2}}\sinh\left(n+\frac{1}{2}\right)2e^{n+\frac{1}{2}}}= $$ $$=\frac{e^{2n^{2}+2n+1}+1+ie^{n^{2}}\left(e^{2n+1}-1\right)}{e^{2n^{2}+2n+1}+1-ie^{n^{2}}\left(e^{2n+1}-1\right)}=\frac{e^{2n^{2}+2n+1}-ie^{n^{2}}+ie^{n^{2}+2n+1}+1}{e^{2n^{2}+2n+1}+ie^{n^{2}}-ie^{n^{2}+2n+1}+1} $$ $$=\frac{\left(e^{n^{2}}+i\right)\left(e^{\left(n+1\right)^{2}}-i\right)}{\left(e^{n^{2}}-i\right)\left(e^{\left(n+1\right)^{2}}+i\right)}. $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X